EAU Guidelines on Urolithiasis

A. Skolarikos (Chair), H. Jung, A. Neisius, A. Petřík, B. Somani, T. Tailly G. Gambaro (Consultant nephrologist) Guidelines Associates: N.F. Davis, R. Geraghty, R. Lombardo, L. Tzelves Guidelines Office: C. Bezuidenhout

TABLE OF CONTENTS

PAGE

1.	INTR	ODUCTIO	٨		6
	1.1	Aims a	nd scope		6
	1.2	Panel c	omposition		6
	1.3	Availab	e publicatio	ons	6
	1.4	Publica	tion history	and summary of changes	6
		1.4.1	Publicatio	n history	6
		1.4.2	Summary	of changes	6
					-
2.	METH 2.1		entification		6 6
	2.1	Review	Intincation		7
3.		ELINES			7
	3.1			gy, risk of recurrence	7
		3.1.1	Introductio		7
		3.1.2	Stone con		7
		3.1.3		os for stone formation	8
	3.2		cation of sto		10
		3.2.1	Stone size		10
		3.2.2	Stone loca		10
		3.2.3	X-ray char		11
	3.3	-	stic evaluati		11
		3.3.1	Diagnostic		11
			3.3.1.1	Evaluation of patients with acute flank pain/suspected ureteral	
				stones	11
		3.3.2	-	cs - metabolism-related	12
			3.3.2.1	Basic laboratory analysis - non-emergency urolithiasis patients	12
			3.3.2.2	Analysis of stone composition	12
			3.3.2.3	Recommendations for laboratory examinations and stone analysis	12
		3.3.3		in special groups and conditions	13
			3.3.3.1	Diagnostic imaging during pregnancy	13
			3.3.3.2	Diagnostic imaging in children	13
				3.3.3.2.1 Summary of evidence and recommendations for	
	.	Б.		diagnostic imaging in children	14
	3.4		Manageme		14
		3.4.1	Renal colid		14
			3.4.1.1	Summary of evidence and recommendations for the management	4.5
		0.4.0		of renal colic	15
		3.4.2	-	ent of sepsis and/or anuria in obstructed kidney	15
			3.4.2.1	Summary of evidence and recommendations for the management	10
		2 4 2	Madiaalas	of sepsis and anuria	16
		3.4.3		xpulsive therapy	16
		044	3.4.3.1	Summary of evidence and recommendations for MET	16
		3.4.4	Chemolys		17
		045	3.4.4.1	Summary of evidence and recommendations for chemolysis	17
		3.4.5		oreal shock wave lithotripsy (SWL)	17
		246	3.4.5.1	Summary of evidence and recommendations for SWL	19 10
		3.4.6		opy (retrograde and antegrade)	19
			3.4.6.1	Summary of evidence and recommendations for retrograde URS,	01
		2 4 7	Doroutous	RIRS and antegrade ureteroscopy	21
		3.4.7		ous nephrolithotomy	22
			3.4.7.1	Summary of evidence and recommendations for endourology	04
		210	Concret	techniques for renal stone removal	24
		3.4.8		commendations and precautions for stone removal	24
			3.4.8.1	Antibiotic therapy	24

	3.4.8.2	Antithrombo	otic therapy and stone treatment	25
		3.4.8.2.1	Summary of evidence and recommendations for	
			antithrombotic therapy and stone treatment	26
	3.4.8.3	Obesity	26	
	3.4.8.4	Stone comp	osition 26	
	3.4.8.5	Contraindica	ations of procedures	27
3.4.9	Specific s	tone manage	ment of ureteral stones	27
	3.4.9.1	Conservativ	e treatment/observation	27
	3.4.9.2	Pharmacolo	gical treatment, medical expulsive therapy	27
	3.4.9.3		for treatment of ureteral stones	27
	3.4.9.4	Selection of	procedure for removal of ureteral stones	28
		3.4.9.4.1	Summary of evidence and recommendations for	
			selection of procedure for active removal of ureteral	
			stones	28
3.4.10	Specific s	tone manage	ment of renal stones	29
00	3.4.10.1	-	e treatment (observation)	29
	3.4.10.2		gical treatment of renal stones	30
	3.4.10.3		for stone removal of renal stones	30
	3.4.10.3		procedure for active removal of renal stones	30
	3.4.10.4		Stones in the renal pelvis or upper/middle calyces	
		3.4.10.4.1		30
	0 4 10 5	3.4.10.4.2	1	30
	3.4.10.5	•	f evidence and recommendations for the management	01
0.4.11		of renal stor		31
3.4.11	-	opy and open		32
	3.4.11.1		dation for laparoscopy and open surgery	32
3.4.12	Steinstras			32
	3.4.12.1	•	f evidence and recommendations for steinstrasse	32
3.4.13	-		ts with residual stones	33
	3.4.13.1		dation for management of patients with residual stones	33
3.4.14	Managem	ent of specif	ic patient groups	33
	3.4.14.1	Managemer	nt of urinary stones and related problems during pregnancy	/ 33
		3.4.14.1.1	Summary of evidence and recommendation for the	
			management of urinary stones and related problems	
			during pregnancy	34
	3.4.14.2	Managemer	nt of stones in patients with urinary diversion	34
		3.4.14.2.1	Summary of evidence and recommendation for the	
			management of stones in patients with urinary diversion	34
	3.4.14.3	Managemer	nt of stones in patients with neurogenic bladder	35
		3.4.14.3.1	Summary of evidence and recommendation for the	
			management of stones in patients with neurogenic	
			bladder	35
	3.4.14.4	Managemer	nt of stones in patients with transplanted kidneys	35
	0	3.4.14.4.1	Summary of evidence and recommendation for the	00
		0.1.11.1.1	management of stones in patients with transplanted	
			kidneys	36
	3.4.14.5	Special prof	blems in stone removal	36
3.4.15		ient of stones		36
5.4.15	-			
	3.4.15.1	Clinical pres		36 27
	3.4.15.2		e management	37
	3.4.15.3	-	ulsive therapy in children	37
	3.4.15.4	-	eal shock wave lithotripsy	37
	3.4.15.5	-	cal procedures	37
	3.4.15.6	-	paroscopic/robot-assisted stone surgery	38
	3.4.15.7		siderations on recurrence prevention	38
	3.4.15.8	-	f evidence and recommendations for the management	
_		of stones in		38
Radiatio	on exposure	e and protecti	on during endourology	39

3.5

META	BOLIC E	VALUATION AND RECURRENCE PREVENTION	40
4.1	Genera	I metabolic considerations for patient work-up	40
	4.1.1	Evaluation of patient risk	40
	4.1.2	Urine sampling	41
	4.1.3	Timing of specific metabolic work-up	41
	4.1.4	Reference ranges of laboratory values	41
	4.1.5	Risk indices and additional diagnostic tools	41
4.2	Genera	l considerations for recurrence prevention	43
	4.2.1	Fluid intake	43
	4.2.2	Diet	44
	4.2.3	Lifestyle	44
	4.2.4	Summary of evidence and recommendation for recurrence prevention	44
4.3	Stone-s	specific metabolic evaluation and pharmacological recurrence prevention	45
	4.3.1	Introduction	45
4.4	Calciun	n oxalate stones	46
	4.4.1	Diagnosis	46
	4.4.2	Interpretation of results and aetiology	48
	4.4.3	Specific treatment	50
	4.4.4	Summary of evidence and recommendations for pharmacological	
		treatments for patients with specific abnormalities in urine composition	
		(based on 24-hour urine samples)	50
4.5	Calciun	n phosphate stones	50
	4.5.1	Diagnosis	51
	4.5.2	Interpretation of results and aetiology	51
	4.5.3	Pharmacological therapy	51
	4.5.4	Summary of evidence and recommendation for the management of calcium	1
		phosphate Stones	52
4.6	Disorde	ers and diseases related to calcium stones	52
	4.6.1	Hyperparathyroidism	52
	4.6.2	Granulomatous Diseases	52
	4.6.3	Primary Hyperoxaluria	52
		4.6.3.1 Summary of evidence and recommendation for the management	of
		primary hyperoxaluria	53
	4.6.4	Enteric hyperoxaluria	53
	4.6.5	Renal tubular acidosis	53
		4.6.5.1 Summary of evidence and recommendations for the managemer	nt
		of tubular acidosis	55
	4.6.6	Nephrocalcinosis	55
		4.6.6.1 Diagnosis	55
4.7	Uric aci	id and ammonium urate stones	55
	4.7.1	Diagnosis	56
	4.7.2	Interpretation of results	56
	4.7.3	Specific treatment	56
	4.7.4	Summary of evidence and recommendations for the management of uric	
		acid- and ammonium urate stones	57
4.8	Struvite	e and infection stones	57
	4.8.1	Diagnosis	58
	4.8.2	Interpretation	58
	4.8.3	Specific treatment	58
4.9		e stones	59
ч. J	4.9.1	Diagnosis	59
	4.9.2	Specific treatment	60
	4.7.2	4.9.2.1 Pharmacological treatment of cystine stones	60
	4.9.3	Summary of evidence and recommendations for the management of cystine	
	С. С. Т	stones	e 61
4.10	2 Q_Dih	ydroxyandenine stones and xanthine stones	61
- 1 .10	4.10.1		61
	4.10.1		61
			61
	4.10.3	Fluid intake and diet	01

4.

		4.11	-	duced stor	nes	61
		4.12	Matrix			62
		4.13			omposition	62
			4.13.1		endations for investigations for the assessment of patients with f unknown composition	62
į	5.	FOLLO	OW-UP O	F URINARY	STONES	63
(б.	BLAD	DER STO	NES		66
		6.1			ogy, and risk factors of bladder stones	66
		6.2	Presen			67
		6.3	-	stic evalua		67
			6.3.1	-	tic investigations for bladder stones	67
			6.3.2	-	ng the cause of bladder stones	67
		6.4		e Managen		68
			6.4.1		ative treatment and Indications for active stone removal	68
			6.4.2		management of bladder stones	68
			6.4.3		stone interventions	68
				6.4.3.1		68
				6.4.3.2	Transurethral cystolithotripsy	68
					6.4.3.2.1 Transurethral cystolithotripsy in adults	68
					6.4.3.2.1.1 Lithotripsy modalities used during	60
					transurethral cystolithotripsy in adults	69
				6 4 2 2	6.4.3.2.1.2 Transurethral cystolithotripsy in children	69 69
				6.4.3.3	Percutaneous cystolithotripsy 6.4.3.3.1 Percutaneous cystolithotripsy in adults:	69 69
					6.4.3.3.2 Percutaneous cystolithotripsy in adults.	69
				6.4.3.4	Extracorporeal shock wave lithotripsy	69
				0.4.3.4	6.4.3.4.1 Shock wave lithotripsy in adults	69
					6.4.3.4.2 Shock wave lithotripsy in addits	70
				6.4.3.5	Laparoscopic cystolithotomy	70
			6.4.4		nt for bladder stones secondary to bladder outlet obstruction in	70
			0.4.4	adult me	-	70
			6.4.5		ituations	70
			0.4.0	6.4.5.1	Neurogenic bladder and stone formation	70
				6.4.5.2	-	71
				6.4.5.3	Urinary diversion	71
					Treatment of stones in patients with bladder augmentation or	, ,
					urinary diversion	71
		6.5	Bladde	r stones fo		72
		6.6			ence and recommendations for the treatment of bladder stones	73
-	7.	REFE	RENCES			75
8	8.	CONF	LICT OF	INTEREST		117
	9.			ORMATION		117
	<i>.</i>	UNAI				11/

1. INTRODUCTION

1.1 Aims and scope

The European Association of Urology (EAU) Urolithiasis Guidelines Panel has prepared these guidelines to help urologists assess evidence-based management of stones/calculi in the urinary tract and incorporate recommendations into clinical practice. This document covers most aspects of the disease, which is still a cause of significant morbidity despite technological and scientific advances. The Panel is aware of the geographical variations in healthcare provision. In addition, information on the management of bladder stones is now also included in these guidelines.

It must be emphasised that clinical guidelines present the best evidence available to the experts but following guideline recommendations will not necessarily result in the best outcome. Guidelines can never replace clinical expertise when making treatment decisions for individual patients but rather help to focus decisions - also taking personal values and preferences/individual circumstances of patients into account. Guidelines are not mandates and do not purport to be a legal standard of care.

1.2 Panel composition

The EAU Urolithiasis Guidelines Panel consists of an international group of clinicians with expertise in this area. All experts involved in the production of this document have submitted potential conflict of interest which can be viewed on the EAU website Uroweb: <u>http://uroweb.org/guideline/urolithiasis/</u>.

1.3 Available publications

A quick reference document (Pocket guidelines) is available. This is an abridged version, which may require consultation together with the full-text versions. Several scientific publications are available [1-3]. All documents are accessible through the EAU website Uroweb: <u>http://uroweb.org/guideline/urolithiasis/</u>.

1.4 Publication history and summary of changes

1.4.1 **Publication history**

The EAU Guidelines on Urolithiasis were first published in 2000. Standard procedure for EAU Guidelines includes an annual assessment of newly published literature in the field to guide future updates. This 2024 Urolithiasis Guidelines present a limited update of the 2023 publication.

1.4.2 Summary of changes

The 2024 Urolithiasis Guidelines have undergone a major revision and restructuring of text, as well as a review of all recommendations.

2. METHODS

2.1 Data identification

Recommendation within the Guidelines are developed by the panels to prioritise clinically important care decisions. The strength of each recommendation is determined by the balance between desirable and undesirable consequences of alternative management strategies, the quality of the evidence (including certainty of estimates), and the nature and variability of patient values and preferences. This decision process, which can be reviewed in the strength rating forms which accompany each guideline statement, addresses a number of key elements:

- 1. the overall quality of the evidence which exists for the recommendation [4];
- 2. the magnitude of the effect (individual or combined effects);
- 3. the certainty of the results (precision, consistency, heterogeneity and other statistical or study related factors);
- 4. the balance between desirable and undesirable outcomes;
- 5. the impact and certainty of patient values and preferences on the intervention

Strong recommendations typically indicate a high degree of evidence quality and / or a favourable balance of benefit to harm and patient preference. Weak recommendations typically indicate availability of lower quality evidence, and/or equivocal balance between benefit and harm, and uncertainty or variability of patient preference [5].

Additional information can be found in the general Methodology section of this print, and online at the EAU website: https://uroweb.org/guidelines/urolithiasis/ publications-appendices. A list of associations endorsing the EAU Guidelines can also be viewed online at the above address.

2.2 **Review**

The 2015 Urolithiasis Guidelines were subjected to peer review prior to publication. Chapter 6, detailing the treatment and follow-up of bladder stones was peer-reviewed in 2019.

GUIDELINES 3.

3.1 Prevalence, aetiology, risk of recurrence

3.1.1 Introduction

Stone incidence depends on geographical, climatic, ethnic, dietary, and genetic factors. The recurrence risk is basically determined by the disease or disorder causing the stone formation. Accordingly, the prevalence rates for urinary stones vary from 1% to 20% [6]. In countries with a high standard of life such as Sweden, Canada or the USA, renal stone prevalence is notably high (> 10%). For some areas, an increase of more than 37% over the last 20 years has been reported [7-9]. There is emerging evidence linking nephrolithiasis to the risk of chronic kidney disease (CKD) [10].

Stones can be stratified into those caused by: infections, non-infectious causes, genetic defects [11, 12]; or adverse drug effects (drug stones) (Table 3.1). See also section 3.2.

Table 3.1: Stones classified by aetiology						
Non-infection stones						
Calcium oxalate	• Calcium phosphate	• Uric acid • Ammonium urate*				
Infection stones						
Magnesium ammonium phosphate	Highly carbonated apatite	Ammonium urate				
Genetic causes						
• Cystine	Xanthine	• 2,8-Dihydroxyadenine				

Drug stones

*In children in developing countries; in patients with anorexia or laxative-abuse.

312 Stone composition

Stone composition is the basis for further diagnostic and management decisions. Stones are often formed from a mixture of substances. Table 3.2 lists the most clinically relevant substances and their mineral components.

Chemical name	Mineral name [13]	Chemical formula
Calcium oxalate monohydrate	Whewellite	$CaC_2O_4.H_2O$
Calcium oxalate dihydrate	Weddelite	CaC ₂ O ₄ .2H ₂ O
Basic calcium phosphate	Apatite	Ca ₁₀ (PO ₄) ₆ .(OH) ₂
Calcium hydroxyl phosphate	Carbonate apatite	Ca ₅ (PO ₄) ₃ (OH)
b-tricalcium phosphate	Whitlockite	Ca ₃ (PO ₄) ₂
Carbonate apatite phosphate	Dahllite	Ca ₅ (PO ₄) ₃ OH
Calcium hydrogen phosphate dihydrate	Brushite	CaHPO ₄ .2H ₂ O
Calcium carbonate	Aragonite	CaCO ₃
Octacalcium phosphate	-	Ca ₈ H ₂ (PO ₄) ₆ .5H ₂ O
Uric acid	Uricite	C ₅ H4N ₄ O ₃

Table 3.2: Stone composition

Uric acid dihydrate	Uricite	C ₅ H ₄ O ₃ .2H ₂ 0
Ammonium urate	-	$NH_4C_5H_3N_4O_3$
Sodium acid urate monohydrate	-	$NaC_5H_3N_4O_3.H_2O$
Magnesium ammonium phosphate hexahydrate	Struvite	MgNH ₄ PO ₄ .6H ₂ O
Magnesium acid phosphate trihydrate	Newberyite	
Magnesium ammonium phosphate monohydrate	Dittmarite	
Cystine	-	
Xanthine	-	-
2,8-Dihydroxyadenine	-	-
Proteins	-	-
Cholesterol	-	-
Calcite	-	-
Potassium urate	-	-
Trimagnesium phosphate	-	-
Melamine	-	-
Matrix	-	-
Drug stones	Active compounds crystallising in urine	-
Foreign body calculi	-	-

3.1.3 **Risk groups for stone formation**

Determination of the risk for stone formation is imperative for pharmacological treatment. Previous stone history (recurrence, regrowth, stone surgeries) is a fundamental element in determining risk for stone formation. About 50% of recurrent stone formers have just one-lifetime recurrence [9, 14]. A review of first-time stone formers calculated a recurrence rate of 26% in five years' time [15]. Highly recurrent disease is observed in slightly more than 10% of patients. Stone type and disease severity determine low- or high-risk stone formers (Table 3.3) [16-32].

However, the risk status of stone formers should be determined in a holistic way taking into consideration not only the probability of stone recurrence or regrowth, but also the risk of chronic kidney disease (CKD), endstage kidney disease (ESKD), and metabolic bone disorder (MBD) [33, 34]. A comprehensive evaluation of stone risk in patients should also include the risk of developing CKD, ESKD, and MBD (Tables 3.4, 3.5, and 3.6) [33]. Urolithiasis can compromise renal function because of the renal stone (obstruction, infection), renal tissue damage due to the primary condition causing stone formation (some genetic diseases, nephrocalcinosis, enteric hyperoxaluria, etc.), or urological treatments for the condition [33]. Certain risk factors have been shown to be associated with such a risk in stone formers, as shown below.

Table 3.3: High-risk stone formers [16-32]

General factors
Early onset of urolithiasis (especially children and teenagers)
Familial stone formation
Recurrent stone formers
Short time since last stone episode
Brushite-containing stones (CaHPO ₄ .2H ₂ O)
Uric acid and urate-containing stones
Infection stones
Solitary kidney (the kidney itself does not particularly increase the risk of stone formation, but prevention of stone recurrence is of crucial importance to avoid acute renal failure)
Chronic Kidney Disease (CKD)

Diseases associated with stone	formation
Hyperparathyroidism	
Metabolic syndrome	
Mineral Bone Disorder (MBD)	
Nephrocalcinosis	
Polycystic kidney disease (PKD)	
•	teric hyperoxaluria due to jejuno-ileal bypass, intestinal resection, Crohn's s, urinary diversion, exocrine pancreatic insufficiency, and bariatric surgery).
Increased levels of vitamin D	
Sarcoidosis	
Spinal cord injury, neurogenic bla	dder
Genetically determined stone for	mation
Cystinuria (type A, B and AB)	
Primary hyperoxaluria (PH)	
Renal tubular acidosis (RTA) type	
2,8-Dihydroxyadeninuria	
Xanthinuria	
Lesch-Nyhan syndrome	
Cystic fibrosis	
Drug-induced stone formation (s	ee Table 4.11)
Anatomical abnormalities assoc	ated with stone formation
Medullary sponge kidney (tubula	r ectasia)
Ureteropelvic junction (UPJ) obst	ruction
Calyceal diverticulum, calyceal cy	/st
Ureteral stricture	
Vesico-uretero-renal reflux	
Horseshoe kidney	
Ureterocele	
Environmental and professional	factors
High ambient temperatures	
Chronic lead and cadmium expos	sure

Table 3.4 Risk factors for CKD and ESKD in stone formerss

Risk factors for CKD/ESKD in stone formers
Female gender
Overweight
Frequent UTI
Struvite stones
Acquired single kidney
Neurogenic bladder
Previous obstructive nephropathy
Ileal conduit

Furthermore, some specific kinds of urolithiasis also carry a particular risk of developing CKD/ESKD as shown below.

Table 3.5 Risk factors for CKD and renal stones

Ris	k of chronic kidney disease and renal stones
,	Possible risk of CKD
	Xanthine stones
	Indinavir stones
	 Distal renal tubular acidosis (incomplete)
	Primary hyperparathyroidism
	Eating disorders and laxative abuse
	Medullary sponge kidney
•	Moderate risk of CKD
	Brushite stones
	2,8-Dihydroxyadenine stones
	Sarcoidosis
	Pyelo-ureteral or ureteral strictures
•	High risk of CKD
	Cystine stones
	Struvite stones
	Stones in a single kidney
	 Distal renal tubular acidosis (complete)
	 Secondary hyperoxaluria (bariatric surgery, inflammatory bowel disease, bowel resection and malabsorptive syndromes)
	• Other forms of nephrocalcinosis (often associated with genetic conditions with hypercalciuria)
	 Anatomical abnormalities of the kidney and urinary tract (for example, horseshoe kidney, ureterocele and vesicoureteral reflux)
	Neurological bladder
•	Very high risk of CKD
	Primary hyperoxaluria
	Autosomal dominant polycystic kidney

Table 3.6 Risk factors for metabolic bone disease and calcium renal stones

Ris	Risk of metabolic bone disease and calcium renal stones				
•	Distal renal tubular acidosis (complete or incomplete)				
•	Medullary sponge kidney				
•	Primary hyperparathyroidism				
•	Malabsorptive syndromes				
•	Fasting hypercalciuria				
•	Genetic disorders				

3.2 Classification of stones

Urinary stones can be classified according to size, location, X-ray characteristics, aetiology of formation, composition, and risk of recurrence [2, 9, 32].

3.2.1 Stone size

Stone size can be reported in a single, two or three dimensions. Currently, the guidelines still use the linear measurement of cumulative stone diameter to stratify stones in < 5 mm, 5-10 mm, 10-20 mm, and > 20 mm for use in the treatment algorithm.

3.2.2 Stone location

Stones can be classified according to anatomical position: upper, middle, or lower calyx; renal pelvis; upper, middle, or distal ureter; and urinary bladder.

3.2.3 X-ray characteristics

Stones can be classified according to plain X-ray appearance [kidney-ureter-bladder (KUB) radiography] (Table 3.7), which varies according to mineral composition [35]. Non-contrast-enhanced computed tomography (NCCT) can be used to classify stones according to density, inner structure, and composition, which can affect treatment decisions (Section 3.3) [35, 36].

Table 3.7: X-ray characteristics	Table 3.7	: X-ray	characteristics
----------------------------------	-----------	---------	-----------------

Radiopaque	Poor radiopacity	Radiolucent
Calcium oxalate dihydrate	Magnesium ammonium phosphate	Uric acid
Calcium oxalate monohydrate	Cystine	Ammonium urate
Calcium phosphate		Xanthine
		2,8-Dihydroxyadenine
		Drug-stones (Section 4.11)

3.3 Diagnostic evaluation

3.3.1 Diagnostic imaging

The most appropriate imaging modality will be determined by the clinical situation, which will differ depending on if a ureteral or a renal stone is suspected.

Standard evaluation includes a detailed medical history and physical examination. Patients with ureteral stones usually present with loin pain, vomiting, and sometimes fever, but may also be asymptomatic [37]. Immediate evaluation is indicated in patients with solitary kidney, fever or when there is doubt regarding a diagnosis of renal colic. Ultrasound (US) should be used as the primary diagnostic imaging tool, although pain relief, or any other emergency measures, should not be delayed by imaging assessments. Ultrasound is safe (no risk of radiation), reproducible and inexpensive. It can identify stones located in the calyces, pelvis, and pyeloureteric and vesico-ureteral junctions (US with filled bladder), as well as in patients with upper urinary tract (UUT) dilatation. Ultrasound has a sensitivity of 45% and specificity of 94% for ureteral stones and a sensitivity of 45% and specificity of 88% for renal stones [38, 39].

The sensitivity and specificity of KUB is 44-77% [40]. Kidney-ureter-bladder radiography [41] is helpful in differentiating between radiolucent and radiopaque stones and could be used for comparison during follow-up.

3.3.1.1 Evaluation of patients with acute flank pain/suspected ureteral stones

Non-contrast-enhanced computed tomography has become the standard for diagnosing acute flank pain and has replaced intravenous urography (IVU). Non-contrast-enhanced CT can determine stone location, burden, and density. When stones are absent, the cause of abdominal pain should be identified. In evaluating patients with suspected acute urolithiasis, NCCT is significantly more accurate than IVU or US [42, 43].

Non-contrast-enhanced CT can detect uric acid and xanthine stones, which are radiolucent on plain films, but not indinavir stones [44]. Non-contrast-enhanced CT can determine stone density, the inner structure of the stone, skin-to-stone distance, and surrounding anatomy; all of which affect the selection of treatment modality [45]. The advantage of non-contrast imaging must be balanced against the loss of information on renal function and urinary collecting system anatomy, as well as higher radiation dose [46-49].

Radiation risk can be reduced by low-dose CT, which may, however, be difficult to introduce in standard clinical practice [50-53]. In patients with a body mass index (BMI) < 30, low-dose CT has been shown to have a sensitivity of 86% for detecting ureteral stones < 3 mm and 100% for calculi > 3 mm [54]. A meta-analysis (MA) of prospective studies [55] has shown that low-dose CT diagnosed urolithiasis with a pooled sensitivity of 93.1% (95% CI: 91.5-94.4), and a specificity of 96.6% (95% CI: 95.1-97.7%). Dual-energy CT can differentiate uric acid containing stones from calcium-containing stones [36].

Summary of evidence	LE
Non-contrast-enhanced CT is used to confirm stone diagnosis in patients with acute flank pain, as it is superior to IVU.	1a
Computed tomography imaging enables 3D reconstruction of the collecting system, as well as measurement of stone density and skin-to-stone distance.	2a
Consider a contrast study if stone removal is planned and the anatomy of the renal collecting system needs to be assessed.	3

Recommendations	Strength rating
Immediate imaging is indicated with fever or solitary kidney, and when diagnosis is doubtful.	Strong
Use non-contrast-enhanced computed tomography to confirm stone diagnosis in patients	Strong
with acute flank pain following initial ultrasound assessment.	

3.3.2 Diagnostics - metabolism-related

Besides imaging, each emergency patient with urolithiasis needs a succinct biochemical work-up of urine and blood test. At this point, no distinction is made between high- and low-risk patients for stone formation.

3.3.2.1 Basic laboratory analysis - non-emergency urolithiasis patients

Biochemical work-up is similar for all stone patients (see 3.3.2.3). However, if no intervention is planned, examination of sodium, potassium, C-reactive protein (CRP), and blood coagulation time can be omitted. Only patients at high risk for stone recurrence should undergo a more specific analytical programme [17]. Stone-specific metabolic evaluation is described in Chapter 4.

The easiest method for diagnosing stones is by analysis of a passed stone using a validated method as listed in section 3.3.2.3. Once the mineral composition is known, a potential metabolic disorder can be identified.

3.3.2.2 Analysis of stone composition

Stone analysis should be performed on all first-time stone formers.

In clinical practice, repeat stone analysis is needed in the case of:

- recurrence under pharmacological prevention;
- early recurrence after interventional therapy with complete stone clearance;
- late recurrence after a prolonged stone-free period [56, 57].

Patients should be instructed to filter their urine to retrieve a concrement for analysis. Stone passage and restoration of baseline renal function should be confirmed.

The preferred analytical procedures are infrared spectroscopy (IRS) or X-ray diffraction (XRD) [58, 59]. Equivalent results can be obtained by polarisation microscopy. Chemical analysis (wet chemistry) is generally deemed to be obsolete [58, 60].

3.3.2.3 Recommendations for laboratory examinations and stone analysis [17, 23, 61-63]

Recommendations	Strength rating
Urine	
Dipstick test of spot urine sample:	Weak
red cells;	
white cells;	
nitrites;	
approximate urine pH;	
urine microscopy and/or culture.	
Blood	
Serum blood sample:	Strong
creatinine;	
• uric acid;	
• (ionised) calcium;	
• sodium;	
• potassium;	
blood cell count;	
C-reactive protein.	
Perform a coagulation test (partial thromboplastin time and international normalised ratio) if intervention is likely or planned.	Strong
Perform stone analysis in first-time formers using a valid procedure (X-ray diffraction or infrared spectroscopy).	Strong

Repeat stone analysis in patients presenting with:	Strong
 recurrent stones despite drug therapy; 	
early recurrence after complete stone clearance;	
• late recurrence after a long stone-free period because stone composition may change.	

3.3.3 Diagnosis in special groups and conditions

3.3.3.1 Diagnostic imaging during pregnancy

In pregnant women, radiation exposure may cause non-stochastic (teratogenesis) or stochastic (carcinogenesis, mutagenesis) effects. Teratogenic effects are cumulative with increasing doses and require a threshold dose (< 50 mGy are considered as safe) and depend on the gestation age (minimum risk prior to the 8th week and after the 23rd week). Carcinogenesis (dose even < 10 mGy present a risk) and mutagenesis (500-1000 mGy doses are required, far in excess of the doses in common radiographic studies) get worse with increasing dose but they do not require a dose threshold and are not dependent on the gestational age [64].

There is no imaging modality that should be routinely repeated in pregnant women. Scientific societies and organizations agree on the safety of the diagnostic evaluation when the US [65], X-ray imaging [66, 67], and MRI [68] are used as and when indicated [69-76]. A radiographic procedure should not be withheld from a pregnant woman if the procedure is clearly indicated and doing so will affect her medical care.

It is generally recommended that an investigation resulting in an absorbed dose to the foetus of greater than 0.5 mGy requires justification.

Ultrasound (when necessary, using changes in the renal resistive index and transvaginal/transabdominal US with a full bladder) has become the primary radiological diagnostic tool when evaluating pregnant patients suspected of renal colic. However, normal physiological changes in pregnancy can mimic ureteral obstruction [72-74].

Magnetic resonance imaging can be used, as a second-line option [70], to define the level of urinary tract obstruction, and to visualise stones as a filling defect [77]. The use of gadolinium is not routinely recommended in pregnancy to avoid toxic effects on the embryo [72].

For the detection of urolithiasis during pregnancy, low-dose CT is associated with a higher positive predictive value (95.8%), compared to MRI (80%) and US (77%). As per White *et al.*, low-dose CT offers improved diagnostic accuracy that can avoid negative interventions such as ureteroscopy [78]. Although low-dose CT protocols reduce radiation exposure, judicious use is currently recommended in pregnant women as a last-line option [72].

Summary of evidence	LE
Only low-level data exist for imaging in pregnant women supporting US and MRI.	3

Recommendations	Strength rating
Use ultrasound as the preferred method of imaging in pregnant women.	Strong
Use magnetic resonance imaging as a second-line imaging modality in pregnant women.	Strong
Use low-dose computed tomography as a last-line option in pregnant women.	Strong

3.3.3.2 Diagnostic imaging in children

Children with urinary stones have a high risk of recurrence; therefore, standard diagnostic procedures for high-risk patients apply, including a valid stone analysis (Section 3.1.3 and Chapter 4). The most common nonmetabolic disorders facilitating stone formation are vesicoureteral reflux (VUR), UPJ obstruction, neurogenic bladder, and other voiding difficulties [79].

When selecting diagnostic procedures to identify urolithiasis in children, it should be remembered that these patients might be uncooperative, require anaesthesia, and may be sensitive to ionising radiation. Again, the principle of ALARA (As Low As Reasonably Achievable) should be observed [80-84].

Ultrasound

Ultrasound is the primary imaging technique [85] in children. Its advantages are the absence of radiation and no need for anaesthesia. Imaging should include both the fluid-filled bladder with adjoining portion of the ureters, as well as the upper ureter [80]. Colour Doppler US shows differences in the ureteral jet [86] and resistive index of the arciform arteries of both kidneys, which are indicative of the grade of obstruction [87]. Nevertheless, the US may fail to identify ureteral stones and provides limited information on renal function [88].

Plain films (KUB radiography)

Kidney-ureter-bladder radiography can help to identify stones and their radiopacity and facilitate follow-up.

Intravenous urography

The radiation dose for IVU is comparable to that for voiding cystourethrography (0.33 mSV) [89]. However, the need for contrast medium injection is a major drawback.

Non-contrast-enhanced computed tomography

Low-dose CT protocols have been shown to significantly reduce radiation exposure [90-92]. Sedation or anaesthesia is rarely needed with modern high-speed CT equipment.

Magnetic resonance urography

Magnetic resonance urography (MRU) cannot be used to detect urinary stones. However, it might provide detailed anatomical information about the urinary collecting system, the location of an obstruction or stenosis in the ureter, and renal parenchymal morphology [93].

3.3.3.2.1 Summary of evidence and recommendations for diagnostic imaging in children

Summary of evidence	LE
Ultrasound is the first-line imaging modality in children when a stone is suspected; it should include the kidney, fluid-filled bladder, and the ureter next to the kidney and the (filled) bladder.	2b
A kidney-ureter-bladder radiography (or low-dose NCCT) is an alternative investigation if US will not provide the required information.	2b

Recommendations	Strength rating
Complete a metabolic evaluation based on stone analysis in all children.	Strong
Collect stone material for analysis to classify the stone type.	Strong
Perform ultrasound as first-line imaging modality in children when a stone is suspected; it should include the kidney, fluid-filled bladder, and the ureter.	Strong
Perform a kidney-ureter-bladder radiography (or low-dose non-contrast-enhanced computed tomography) if ultrasound will not provide the required information.	Strong

3.4 Disease Management

The treatment of urolithiasis is based on many parameters and is individualised for each patient. Parameters such as the size, number, location, and constitution of the stones are the cornerstones for deciding the treatment. In addition, the morphology, shape, volume, mobility, and hardness of the stone should be considered. Finally, the anatomy and compliance of the entire pelvic-calyceal system should be assessed for each patient. The design of therapeutic algorithms including all the above parameters is difficult mainly due to the great diversity of lithiasis disease per patient. Furthermore, there is a significant lack of comparative clinical studies to support development of algorithms using parameters other than stone size and composition.

3.4.1 Renal colic

Pain relief

Non-steroidal anti-inflammatory drugs (NSAIDs) (including metamizole dipyrone), and paracetamol are effective in patients with acute stone colic [94] and have better analgesic efficacy than opioids [95]. Ibuprofen compared to ketorolac is a more rapid-acting drug in controlling pain caused by renal colic with a similar side effect profile [96].

Pain relief from intramuscular (i.m.) diclofenac compared favourably with those from intravenous (i.v.) ibuprofen and i.v. ketorolac; however, no recommendation can be given due to the way in which the results have been reported [97]. The addition of antispasmodics to NSAIDs does not result in better pain control. Patients receiving NSAIDs are less likely to require further analgesia in the short term. It should be taken into consideration that the use of diclofenac and ibuprofen increased major coronary events [94, 95]. Oral diclofenac in the long-term increases the risk of cardiovascular events and upper GI bleeding [98]. Patients with significant risk factors for cardiovascular events should be treated with diclofenac only after careful consideration. As risks increase with dose and duration, the lowest effective dose should be used for the shortest duration [99]. Non-steroidal antiinflammatory drugs may affect renal function in those patients with pre-existing decreased GFR. In an RCT including 150 patients, Intradermal sterile water injection (ISWI) and diclofenac (i.m.) were shown equally effective for pain relief in acute renal colic. Intradermal sterile water injection may be an alternative to NSAIDs in pregnant patients or others where NSAIDs are contra-indicated [100].

Opioids, particularly pethidine, are associated with a high rate of vomiting compared to NSAIDs and carry a greater likelihood of further analgesia being needed [94, 101]. If an opioid is used, it is recommended that it is not pethidine. Combination of opioids and NSAIDs increase analgetic effect compared to opioids alone [102]. Acupuncture seems to be effective in renal colic alone or in combination with analgetic drugs, but there is limited data [103, 104].

Prevention of recurrent renal colic

Facilitation of passage of ureteral stones is discussed in Section 3.4.9. For patients with ureteral stones that are expected to pass spontaneously, NSAID tablets or suppositories (e.g., diclofenac sodium, 100-150 mg/day, 3-10 days) may help reduce inflammation and the risk of recurrent pain [105, 106]. Although NSAID can affect renal function in patients with already reduced function, it has no functional effect in patients with normal renal function [107].

The systematic review and MA by Hollingsworth *et al.*, [108] addressed pain reduction as a secondary outcome and concluded that medical expulsive therapy (MET) seems efficacious in reducing pain episodes of patients with ureteral stones.

If analgesia cannot be achieved medically, drainage, using stenting, percutaneous nephrostomy, or stone removal, is indicated [109].

3.4.1.1	Summary of evidence and recommendations for the management of renal colic

Summary of evidence	LE
Non-steroidal anti-inflammatory drugs are very effective in treating renal colic and are superior to opioids.	1b
For symptomatic ureteral stones, stone removal as first-line treatment is a feasible option in selected patients.	1b

Recommendations	Strength rating
Offer a non-steroidal anti-inflammatory as the first drug of choice; depending on	Strong
cardiovascular risk factors and side effects.	
Offer opiates (hydromorphine, pentazocine or tramadol) as a second choice.	Weak
Offer renal decompression or ureteroscopic stone removal in case of analgesic refractory	Strong
colic pain.	

3.4.2 Management of sepsis and/or anuria in obstructed kidney

The obstructed kidney with all signs of urinary tract infection (UTI) and/or anuria is a urological emergency. Urgent decompression is often necessary to prevent further complications in infected hydronephrosis secondary to stone-induced, unilateral, or bilateral, renal obstruction.

Decompression

There are two options for urgent decompression of obstructed collecting systems [110]:

- placement of an indwelling ureteral stent
- percutaneous placement of a nephrostomy tube.

Several systematic reviews on the subject have been published, all of which emphasize that the available literature comparing different drainage modalities for obstructing stones with or without infection is scarce, based on small cohorts and of medium to very low quality [110]. There appears to be no difference in success rate or complication rate of both procedures and there is not a difference in time to defervescence in the population presenting with fever. Both meta-analyses identified patients receiving a nephrostomy tube to have a longer stay in the hospital. Based on the available data, a DJ stent has a more negative impact on the patients' quality of life in comparison with a nephrostomy tube, which can be explained mainly by the stent-related symptoms that these patients experience [111, 112].

Definitive stone removal should be delayed until the infection is cleared following a complete course of antimicrobial therapy. A small RCT showed the feasibility of immediate ureteroscopic stone removal combined

with an appropriate antibiotic regimen; however, at the cost of longer hospital stay and higher analgesic requirements [113].

Further measures

Along with urgent decompression of the obstructed and infected urinary collecting system, both urine- and blood samples should be sent for culture-antibiogram sensitivity testing and antibiotics should be initiated immediately [114, 115]. The regimen should be re-evaluated in the light of the culture-antibiogram results. Although clinically well accepted, the impact of a second antibiogram test on treatment outcome has not yet been evaluated [116]. Intensive care might become necessary.

3.4.2.1 Summary of evidence and recommendations for the management of sepsis and anuria

Summary of evidence	LE
For decompression of the renal collecting system, ureteral stents and percutaneous nephrostomy	1b
catheters are equally effective.	

Recommendations	Strength rating
Urgently decompress the collecting system in case of sepsis with obstructing stones, using percutaneous drainage or ureteral stenting.	Strong
Delay definitive treatment of the stone until sepsis is resolved.	Strong
Collect (again) urine for antibiogram test following decompression.	Strong
Start antibiotics immediately (+ intensive care, if necessary).	Strong
Re-evaluate antibiotic regimen following antibiogram findings.	Strong

3.4.3 Medical expulsive therapy

Several drug classes including α -blockers, calcium channel inhibitors, and phosphodiesterase type 5 inhibitors (PDEI-5) are used for MET [117-120] A class effect of α -blockers in MET has been demonstrated in MAs although this is an off-label indication [121-123]. However, there is contradictory evidence between these studies and several well-designed, multicentre, placebo-controlled, double-blinded randomised studies showing limited, or no, benefit using α -blockers, besides some advantage for distal ureteral stones > 5 mm [124-128]. Based on studies with a limited number of patients [120, 121, 129, 130], no recommendation for the use of PDEI-5 or corticosteroids in combination with α -blockers in MET can be made. The panel concludes that MET using α -blockers seems efficacious in the treatment of patients with distal ureteral stones > 5 mm who are amenable to conservative management. Medical expulsive therapy in special situations is addressed in the relevant chapters.

3.4.3.1 Summary of evidence and recommendations for medical expulsive therapy

Summary of evidence	LE
Medical expulsive therapy seems to be efficacious for treating patients with ureteral stones who are amenable to conservative management. The greatest benefit might be among those with > 5 mm (distal) ureteral stones.	1a
Insufficient data exist to support the use of PDEI-5 or corticosteroids in combination with α -blockers as an accelerating adjunct.	2a
Alpha-blockers increase stone expulsion rates in distal ureteral stones > 5 mm.	1a
A class effect of α -blockers has been demonstrated.	1a

Recommendation	Strength rating
Offer α -blockers as medical expulsive therapy as one of the treatment options for (distal)	Strong
ureteral stones > 5 mm.*	

* Alpha-blockers are an off-label treatment

3.4.4 Chemolysis

Percutaneous irrigation chemolysis

Percutaneous chemolysis is rarely used nowadays, for practical reasons. Percutaneous irrigation chemolysis may be an option for infection stones and theoretically also for uric acid stones. For dissolution of struvite stones, Suby's G solution (10% hemiacidrin; pH 3.5-4) can be used. The method has been described in case series and literature reviews [131].

Oral chemolysis

Stones composed of uric acid, but not sodium or ammonium urate stones, can be dissolved by oral chemolysis. Prior stone analysis may provide information on stone composition. Urinary pH measurement and X-ray characteristics can provide information on the type of stone.

Oral chemolysis is based on alkalinisation of urine by application of alkaline citrate or sodium bicarbonate. The pH should be adjusted to 7.0-7.2. Chemolysis is more effective at a higher pH, which might, however, promote calcium phosphate stone formation. Patients will need to adjust the dosage of alkalising medication by self-monitoring the pH of their urine. A SR shows a complete or partial dissolution in 80.5%, discontinuation rate of 10.2% with 15.7% requiring further intervention [132].

In the case of uric acid obstruction of the collecting system, oral chemolysis in combination with urinary drainage is indicated. A combination of alkalinisation with tamsulosin can increase the frequency of spontaneous passage of distal ureteral uric acid stones as shown in one RCT for stones > 5 mm [133]. Additional SWL might help to improve the results but evidence is weak [134].

3.4.4.1 Summary of evidence and recommendations for chemolysis

Summary of evidence	LE
Irrigation chemolysis has been used in limited clinical settings to dissolve struvite stones.	3
Uric acid stones > 5mm can be dissolved based on oral alkalinisation of the urine above 7.0.	3
For obstructing uric acid stones, a combination of oral chemolysis with tamsulosin is more effective than each substance alone, particularly in stones > 8 mm.	1b

Recommendations (oral chemolysis of uric acid stones)	Strength rating
Inform the patient how to monitor urine-pH by dipstick and to modify the dosage of alkalising medication according to urine pH, as changes in urine pH are a direct consequence of such medication.	Strong
Carefully monitor patients during/after oral chemolysis of uric acid stones.	Strong
Combine oral chemolysis with tamsulosin in case of (larger) ureteral stones (if active intervention is not indicated).	Weak

3.4.5 Extracorporeal shock wave lithotripsy (SWL)

The success of SWL depends on the efficacy of the lithotripter and the following factors:

- size, location (ureteral, pelvic, or calyceal), and composition (hardness) of the stones (Section 3.4.9.3);
- patient's habitus (Section 3.4.10.3);
- performance of SWL (best practice, see below).

Each of these factors significantly influences the retreatment rate and outcome of SWL.

Best clinical practice

Stenting

Routine use of internal stents before SWL does not improve stone-free rates (SFRs), nor lowers the number of auxiliary treatments. It may, however, reduce the formation of steinstrasse [135-138].

Pacemaker

Patients with a pacemaker can be treated with SWL, provided that appropriate technical precautions are taken. Patients with implanted cardioverter defibrillators must be managed with special care (firing mode temporarily reprogrammed during SWL treatment). However, this might not be necessary with new-generation lithotripters [139].

Shock wave rate

Lowering shock wave frequency from 120 to 60-90 shock waves/min improves SFRs [140-148]. Ultraslow

frequency of 30 shock waves/min may increase SFR [149]. Tissue damage increases with shock wave frequency [150-153].

Number of shock waves, energy setting, and repeat treatment sessions

The number of shock waves that can be delivered at each session depends on the type of lithotripter and shock wave power. There is no consensus on the maximum number of shock waves [154]. Starting SWL on a lower energy setting with stepwise power (and SWL sequence) ramping can achieve vasoconstriction during treatment [150], which prevents renal injury [155-157]. Animal studies [158] and a prospective randomised study [159] have shown better SFRs (96% vs. 72%) using stepwise power ramping, but no difference has been found for fragmentation or evidence of complications after SWL, irrespective of whether ramping was used [160, 161].

There are no conclusive data on the intervals required between repeated SWL sessions. However, clinical experience indicates that repeat sessions are feasible (within one day for ureteral stones) [162].

Improvement of acoustic coupling

Proper acoustic coupling between the cushion of the treatment head and the patient's skin is important. Defects (air pockets) in the coupling gel deflect 99% of shock waves [163]. Gentle swiping between the coupled therapy head and the patient skin helps remove air bubbles and improves the coupling [164]. Ultrasound gel is probably the most widely-used agent available as a lithotripsy coupling agent [165].

Procedural control

Results of treatment are operator-dependent, and experienced clinicians obtain better results. During the procedure, careful imaging control of localisation contributes to outcome quality [166].

Pain Control

Careful control of pain during treatment is necessary to limit pain-induced movements and excessive respiratory excursions [167-170].

Antibiotic prophylaxis

No standard antibiotic prophylaxis before SWL is recommended. However, prophylaxis is recommended in the case of internal stent placement ahead of anticipated treatments and in the presence of increased bacterial burden (e.g., indwelling catheter, nephrostomy tube, or infectious stones) [62, 171, 172].

Medical therapy after extracorporeal shock wave lithotripsy

Despite conflicting results, most RCTs and several MAs support MET after SWL for ureteral or renal stones as an adjunct to expedite expulsion and increase SFRs. Medical expulsion therapy might also reduce analgesic requirements [173].

Post-treatment management

Mechanical percussion and diuretic therapy can significantly improve SFRs and accelerate stone passage after SWL [174].

Complications of extracorporeal shock wave lithotripsy

Compared to percutaneous nephrolithotomy (PCNL) and ureteroscopy (URS), there are fewer overall complications with SWL [175] (Table 3.8). In a Meta-Analysis of 115 RCT's 18.43% of Clavien I–II complications and 2.48% of Clavien III–IV complications occurred [175]. The relationship between SWL and hypertension or diabetes is unclear. Published data are contradictory; however, no evidence exists supporting the hypothesis that SWL may cause long-term adverse effects [176-182].

Complications		%	Reference
Related to stone fragments	Steinstrasse	4	[183-185]
	Macroscopic haematuria	17.2%	[175]
	Pain	12.1%	[175]
	Regrowth of residual fragments	21 – 59	[186, 187]
	Auxiliary procedure	6.9%	[175]
	Renal colic	2 - 4	[188]

Table 3.8: Shock wave lithotripsy-related complications

Infectious	Bacteriuria in non- infection stones		7.7 – 23	[186-189]
	Sepsis		0.15%	[175]
Tissue effect	Renal	Haematoma, symptomatic	0.21%	[175]
		Haematoma, asymptomatic	1.2%	[175]
	Cardiovascular	Dysrhythmia	11 – 59	[186, 188]
		Morbid cardiac events	Case reports	[186, 188]
	Gastrointestinal	Bowel perforation	Case reports	[190]
		Liver, spleen haematoma	Case reports	[190-193]

3.4.5.1 Summary of evidence and recommendations for Shock wave lithotripsy

Summary of evidence	LE
Stepwise power ramping prevents renal injury.	1b
Clinical experience has shown that repeat sessions are feasible (within one day for ureteral stones).	4
Optimal shock wave frequency is 1.0 to 1.5 Hz.	1a
Proper acoustic coupling between the cushion of the treatment head and the patient's skin is important.	2
Careful imaging control of localisation of stone contributes to outcome of treatment.	2a
Careful control of pain during treatment is necessary to limit pain-induced movements and excessive respiratory excursions.	1a
Antibiotic prophylaxis is recommended in the case of internal stent placement, infected stones, or bacteriuria.	1a

Recommendations	Strength rating
Ensure correct use of the coupling agent because this is crucial for effective shock wave transportation.	Strong
Maintain careful fluoroscopic and/or ultrasonographic monitoring during shock wave lithotripsy (SWL).	Strong
Use proper analgesia because it improves treatment results by limiting pain-induced movements and excessive respiratory excursions.	Strong
Prescribe antibiotics prior to SWL in the case of infected stones or bacteriuria.	Strong

3.4.6 Ureteroscopy (retrograde and antegrade)

The current standard for rigid ureteroscopes is a tip diameter of < 8 French (F). Rigid URS can be used for the whole ureter [176]. However, technical improvements, as well as the availability of digital scopes, also favour the use of flexible ureteroscopes in the ureter [194].

Percutaneous antegrade removal of ureteral stones is a consideration in selected cases, i.e. large (> 15 mm), impacted proximal ureteral calculi in a dilated renal collecting system [195, 196], or when the ureter is not amenable to retrograde manipulation [197].

Ureteroscopy for renal stones: Retrograde Intrarenal Surgery (RIRS)

Technical improvements including endoscope miniaturisation, improved deflection mechanism, enhanced optical quality and tools, and introduction of disposables have led to an increased use of URS for both renal and ureteral stones. Major technological progress has been achieved for RIRS. A systematic review addressing renal stones > 2 cm showed a cumulative SFR of 91% with 1.45 procedures/patient; 4.5% of the complications were > Clavien 3 [198, 199]. Digital scopes demonstrate shorter operation times due to the improvement in image quality [200].

Stones that cannot be extracted directly must be disintegrated. If it is difficult to access stones within the lower renal pole that need disintegration it may help to displace them into a more accessible calyx [201].

Best clinical practice in ureteroscopy

Access to the upper urinary tract

Most interventions are performed under general anaesthesia, although local or spinal anaesthesia is possible [202]. Intravenous sedation is suitable for female patients with distal ureteral stones [203]. Smaller caliber (4.5/6 Fr) semi-rigid ureteroscope was associated with significantly higher SFR, lower rates of ureteric injury, and shorter hospital stay [204].

Antegrade URS is an option for large, impacted, proximal ureteral calculi [195, 205]. Reduction of flexible ureteroscope diameter may provide similar vision, deflection, and manoeuvrability to standard flexible ureteroscopes potentially with improved ureteric access [206]. Disposable ureteroscopes provide similar safety and clinical effectiveness to reusable scopes. Concerns regarding cost-effectiveness and environmental sustainability remain [204, 207-209].

Safety aspects

Fluoroscopic equipment must be available in the operating room. The Panel recommends placement of a safety wire, even though some groups have demonstrated that URS can be performed without it [210-214]. Balloon and plastic dilators should be available, if necessary.

Prior rigid URS can be helpful for optical dilatation followed by flexible URS, if necessary. If ureteral access is not possible, insertion of a JJ stent followed by URS after seven to fourteen days offers an alternative [215]. Bilateral URS during the same session is feasible resulting in equivalent-to-lower SFRs, but slightly higher overall complication rates (mostly minor, Clavien 1 and 2) [216, 217].

Difficult lower pole anatomy such as steep infundibulopelvic angle predisposes to failure during RIRS [218]. A reusable flexible ureteroscope can be more helpful in reaching a difficult lower pole calyx [219]. Prolonged operative times are linked to increased complication rates in ureteroscopy, and efforts must be made to keep it below 90 minutes [220].

Ureteral access sheaths

Hydrophilic-coated ureteral access sheaths, which are available in different calibres (inner diameter from 9 F upwards), can be inserted (via a guide wire) with the tip placed in the proximal ureter.

Ureteral access sheaths allow easy, multiple, access to the UUT and therefore significantly facilitate URS. The use of ureteral access sheaths improves vision by establishing a continuous outflow, decreases intrarenal pressure, and potentially reduces operating time [221, 222].

The insertion of ureteral access sheaths may lead to ureteral damage, the risk is lowest in prestented systems [223]. No data on long-term side effects are available [198, 223]. Whilst larger cohort series showed no difference in SFRs and ureteral damage (stricture rates of about 1.8%), they did show lower postoperative infectious complications [224, 225]. Increasing sheath size directly determines higher grades of ureteral injury rates but there is no difference in long-term stricture rates [226]. The use of a ureteral access sheath is safe and can be useful for large and multiple renal stones or if long procedural time is expected [227].

Stone extraction

The aim of URS is complete stone removal. "Dust and go" strategies should be limited to the treatment of large (renal) stones [228]. Stones can be extracted by endoscopic forceps or baskets. Only baskets made of nitinol can be used for flexible URS [229].

Intracorporeal lithotripsy

The most effective lithotripsy system is the holmium: yttrium-aluminum-garnet (Ho: YAG) laser, which is currently the optimum standard for URS and flexible nephroscopy (Section 3.4.6), because it is effective in all stone types [230, 231]. Compared to low-power lasers, high-power laser reduces procedural time although the reported difference in clinical outcomes was non-significant and based on a low level of evidence [232]. The only RCT to date shows no clinical difference regarding stone-free rate or operative time [233]. Although pulse-modulation in Ho: YAG lasers has demonstrated several in vitro benefits, a systematic review including 8 comparative studies and only one RCT showed no difference in stone-free rate, complication rate, or operative time [234]. The two available RCTs on the subject both found a shorter operative time, without conferring a difference in success rate [235, 236]. Thulium fiber laser (TFL) for stone disease has a promising role and offers good clinical outcomes, which seem to be comparable to Ho: YAG laser (holmium) laser [237-239]. With the limited reports of clinical use available to date, a meta-analysis could not demonstrate the superiority of TFL over Ho: YAG, although the operative time to achieve this stone-free rate seems to be shorter with the use of TFL [240]. More comparative clinical studies are however needed between these two modalities. When a laser is not available, pneumatic and US systems can be used with high disintegration efficacy in rigid URS [241, 242]. However, stone migration into the kidney is a common problem, which can be prevented by the placement

of special anti-migration tools proximal to the stone [243]. Medical expulsion therapy following Ho: YAG laser lithotripsy increases SFRs and reduces colic episodes [244].

Stenting before and after URS

Routine stenting is not necessary before URS. Despite a complete lack of RCTs on this subject, a meta-analysis has been performed, demonstrating that pre-stenting may improve the stone-free rate of ureteroscopic treatment of renal stones, but not of ureteral stones [245]. Although it may facilitate ureteroscopic management of stones and increase success in access sheath placement, intra-operative complications were not significantly different [245, 246]. One should also consider that pre-stenting also causes the patient to experience stent-related symptoms during the time the stent is indwelling, prior to a procedure.

Randomised prospective trials have found that routine stenting after uncomplicated URS (complete stone removal) is not necessary; stenting might be associated with higher postoperative morbidity and costs [247]. Smaller diameter ureteric stents may reduce urinary symptoms and patient-reported pain [248]. A ureteral catheter with a shorter indwelling time (one day) may also be used, with similar results [249].

Stents should be inserted in patients who are at increased risk of complications (e.g., ureteral trauma, residual fragments, bleeding, perforation, UTIs, or pregnancy), and in all doubtful cases, to avoid stressful emergencies. The ideal duration of stenting is not known. Most urologists favour one to two weeks after URS. Alpha-blockers reduce the morbidity of ureteral stents and increase tolerability [250].

Medical expulsive therapy before and after ureteroscopy

Medical expulsion therapy before URS might reduce the risk for intra-operative ureteral dilatation, protect against ureteral injury when using access sheaths and increase stone-free rates four weeks after URS [251, 252].

Medical expulsion therapy following Ho: YAG laser lithotripsy accelerates the spontaneous passage of fragments and reduces episodes of colic [244].

Complications of ureteroscopy

The overall complication rate after URS is 4-25% [253, 254]. Most complications are minor and do not require intervention. There is evidence suggesting a risk of post-operative urosepsis of up to 5% [255, 256]. Ureteral avulsion and strictures are rare (< 1%). Previous perforations, pre-operative positive urine cultures, comorbidities, and longer operation time are the most important risk factor for complications [220, 257, 258]. Infectious complications following URS can be minimised using prophylactic antibiotics, limiting stent dwell and procedural time, identification and treatment of UTI, and planning in patients with large stone burden and multiple comorbidities [259].

High intrarenal pressure (IRP) predisposes to URS complications, and measures should be used to reduce IRP. Currently, there are no accurate ways to measure the intra-operative IRP [260].

3.4.6.1 Summary of evidence and recommendations for retrograde URS, RIRS and antegrade ureteroscopy

Summary of evidence	LE
In uncomplicated URS, a post-procedure stent need not be inserted.	1a
In URS, pre-stenting has been shown to improve outcomes for renal stones.	1a
An α-blocker can reduce stent-related symptoms and colic episodes.	1a
The most effective lithotripsy system for flexible ureteroscopy is the Ho: YAG laser.	2a
Pneumatic and US systems can be used with high disintegration efficacy in rigid URS.	2a
Percutaneous antegrade removal of proximal ureter stones, or laparoscopic ureterolithotomy are feasible alternatives to retrograde ureteroscopy, in selected cases.	1b
Pre-treatment of patients undergoing URS with an α-blocker one week prior to the procedure reduces the need for active dilatation and increases the stone free rate.	1a

Recommendations	Strength rating
Use holmium: yttrium-aluminum-garnet (Ho: YAG) or Thulium fiber laser (TFL) laser	Strong
lithotripsy for (flexible) ureteroscopy (URS).	
Perform stone extraction only under direct endoscopic visualisation of the stone.	Strong

	1
Do not insert a stent in uncomplicated cases.	Strong
Offer medical expulsive therapy for patients suffering from stent-related symptoms and after Ho: YAG laser lithotripsy to facilitate the passage of fragments.	Strong
Use percutaneous antegrade removal of ureteral stones as an alternative when shock wave lithotripsy (SWL) is not indicated or has failed, and when the upper urinary tract is not amenable to retrograde URS.	Strong
Use flexible URS (even for stones > 2 cm) in cases where percutaneous nephrolithotomy or SWL are not an option. However, in this case, there is a higher risk that a follow-up procedure and placement of a ureteral stent may be needed.	Strong

3.4.7 **Percutaneous nephrolithotomy**

Percutaneous nephrolithotomy remains the standard procedure for large renal calculi. Different rigid and flexible endoscopes are available, and the selection is mainly based on the surgeon's own reference. Standard access tracts are 24-30 F. Smaller access sheaths, < 18 F, were initially introduced for paediatric use, but are now increasingly utilized in the adult population [261, 262].

Contraindications

Patients receiving anticoagulant therapy must be monitored carefully pre-and post-operatively. Anti-coagulant therapy must be discontinued before PCNL [263].

Other important considerations include:

- untreated UTI;
- tumour in the presumptive access tract area;
- · potential malignant kidney tumour;
- pregnancy (Section 3.4.14.1).

Best clinical practice

Intracorporeal lithotripsy

Several methods for intracorporeal lithotripsy during PCNL are available. Ultrasonic, pneumatic, and combined systems are most commonly used for rigid nephroscopy, whilst the laser is increasingly used for miniaturised and flexible instruments [264].

Pre-operative imaging

Pre-procedural imaging evaluations are summarised in Section 3.3.1. In particular, US or CT of the kidney and the surrounding structures can provide information regarding interposed organs within the planned percutaneous path (e.g., spleen, liver, large bowel, pleura, and lung).

Positioning of the patient

Both prone and supine positions are equally safe. A meta-analysis including twelve studies and a total of 1,290 patients treated, showed a similar SFR but a lower operative time for supine PCNL [265]. The supine position allows simultaneous retrograde access to the collecting system, using a flexible ureteroscope [266]. The combination of PCNL and RIRS may be a good alternative for the treatment of complex renal stones compared to standard PCNL; however, the existing evidence is of low-quality [265, 267].

Puncture

Although fluoroscopy is still the most common intra-operative imaging method, the use of US as an additional or only means of puncture guidance provides advantages according to two meta-analyses including eight randomised controlled trials. Additional to the expected reduced radiation exposure with the use of ultrasound the meta-analyses also demonstrated a lower complication rate [268, 269]. Pre-operative CT or intra-operative US allows identification of the tissue between the skin and kidney and lowers the incidence of visceral injury. As an additional aid to increase puncture accuracy, the calyceal puncture may be done under direct visualisation using simultaneous flexible URS [270-272].

Dilatation

Dilatation of the percutaneous access tract can be achieved using a metallic telescopic, single (one-shot or serial) dilator, or balloon dilatator. During PCNL, safety and effectiveness are similar for different tract dilatation methods [273]. Although there are papers demonstrating that single-step dilation is equally effective as other methods and that US only can be used for the dilatation, the difference in outcomes is most likely related to surgeon experience rather than to the technology used [273, 274]. A meta-analysis of the most commonly used

tract dilation methods suggested that one-step dilation would allow for a shorter operative time and reduced complication rate, including haemoglobin loss and transfusion rate [275].

Choice of instruments

Several meta-analyses on mini-PCNL (12-22 F) vs. standard PCNL (> 22 F) have identified that both techniques allow for a similar SFR. Patients treated with mini-PCNL had reduced blood loss and transfusion rates, as well as a shorter hospital stay, without a significant difference in overall complication rates [262, 276-278]. However, it is important to note that the level of evidence was downgraded due to heterogeneity of data related to tract sizes used and types of stones treated. There is some evidence for using suction during PCNL to reduce intra-renal pressure and increase SFR [279].

Post-operative drainage

The decision on whether, or not, to place a nephrostomy tube or a double J stent at the conclusion of the PCNL procedure depends on several factors, including:

- presence of residual stones;
- likelihood of a second-look procedure;
- significant intra-operative blood loss/ bleeding from the percutaneous tract;
- urine extravasation;
- ureteral obstruction;
- potential persistent bacteriuria due to infected stones;
- solitary kidney;
- bleeding diathesis;
- planned percutaneous chemolitholysis.

Small-bore nephrostomies seem to have advantages in terms of postoperative pain [262, 280, 281]. Tubeless PCNL is performed without a nephrostomy tube and is associated with reduced post-operative pain and hospital stay [282]. When neither a nephrostomy tube nor a ureteral stent is introduced, the procedure is known as a totally tubeless PCNL [283]. In uncomplicated cases, the latter procedure results in a shorter hospital stay, with no disadvantages reported [284].

As reported in the above section on the drainage of an infected or obstructed system [110-112] (section 3.4.2), the quality of life may be slightly lower with a DJ stent in comparison to a short-term nephrostomy tube after PCNL. This should be weighed against the shorter hospital stay with a DJ stent [285].

Complications of percutaneous nephrolithotomy

A systematic review of almost 12,000 patients shows the incidence of complications associated with PCNL; fever 10.8%, transfusion 7%, thoracic complication 1.5%, sepsis 0.5%, organ injury 0.4%, embolisation 0.4%, urinoma 0.2%, and death 0.05% [286].

Perioperative fever can occur, even with a sterile pre-operative urinary culture and peri-operative antibiotic prophylaxis, because the renal stones themselves may be a source of infection. The evidence demonstrates that a stone culture or urine culture taken directly from the renal pelvis is more predictive of post-operative SIRS or sepsis. Whenever possible a urine culture from the renal pelvis and/or stone culture should be taken at the time of PCNL [287].

Intra-operative renal stone or renal pelvic urine culture may be more indicative of the causative organism for sepsis; therefore, helping to select the most suitable postoperative antibiotics [287-289]. Although this data is weak, there is limited retrospective data indicating that increased pressures during mPCNL may contribute to febrile complications [290-292]. This contrasts with the previously mentioned meta-analyses on mini vs standard PCNL that do not identify a difference in complication rate between the two procedures [262, 276-278]. Bleeding after PCNL may be treated by briefly clamping the nephrostomy tube. Super-selective embolic occlusion of the arterial branch may become necessary in the case of severe bleeding. Several meta-analyses have demonstrated that the use of tranexamic acid reduces bleeding complications and the transfusion rate of PCNL [293-295]. However, the transfusion rate in the control group of the meta-analyses was in the range of 10-12%.

Depending on the stone burden and the patient's anatomy, multiple tracts may be necessary to render the patient stone free in one session of PCNL. While this is a generally accepted practice, it should be highlighted that this comes with an increased risk of postoperative complications including pleural damage, infections, and the need for transfusion [296].

To reduce post-operative pain after PCNL, a peripheral nerve block can be performed at the intercostal nerve, paravertebral region, erector spinae, or quadratus lumborum. Such a block may significantly reduce the need for post-operative opioid analgesics [297, 298]. Current evidence shows that a quadratus lumborum block or

infiltration of a local anaesthetic around the nephrostomy tube may reduce post-operative pain and opioid consumption after PCNL [299, 300].

3.4.7.1 Summary of evidence and recommendations for endourology techniques for renal stone removal

Summary of evidence	LE
Imaging of the kidney with US or CT can provide information regarding inter-positioned organs within the planned percutaneous path (e.g., spleen, liver, large bowel, pleura, and lung).	3
Both prone and supine positions are equally safe with equivalent SFR.	1a
Percutaneous nephrolithotomy performed with small instruments tends to be associated with significantly lower blood loss, but the duration of procedure tended to be significantly longer. There are no significant differences in SFR or any other complications.	1a
In uncomplicated cases, a totally tubeless PCNL results in a shorter hospital stay, with no increase in complication rate.	1a
Peri-operative use of tranexamic acid may reduce bleeding complications and transfusion rates.	1a
Urine cultures taken directly from the renal pelvis, or a stone culture are more predictive of post-PCNL sepsis than a pre-operative midstream urine culture.	1a

Recommendations	Strength rating
Perform pre-procedural computed tomography (CT) imaging, including contrast medium when indicated or retrograde study when starting the procedure, to assess stone comprehensiveness and anatomy of the collecting system to ensure safe access to the renal stone.	Strong
Perform a tubeless (without nephrostomy tube) or totally tubeless (without nephrostomy tube and ureteral stent) percutaneous nephrolithotomy (PCNL) procedure, in uncomplicated cases.	Strong
Take a stone culture or urine culture directly from the renal pelvis at time of PCNL, if possible.	Strong

3.4.8 General recommendations and precautions for stone removal

3.4.8.1 Antibiotic therapy

Urinary tract infections should always be treated if stone removal is planned. In patients with clinically significant infection and obstruction, drainage should be performed for several days before starting stone removal. A urine culture or urinary microscopy should be performed before treatment [301].

Peri-operative antibiotic prophylaxis

The available evidence for prevention of infection following URS and percutaneous stone removal, remains limited [302]. Administration of a single dose of prophylactic antibiotics prior to ureteroscopy was found to be sufficient [302-304]. In a review of a large database of patients undergoing PCNL, it was found that in patients with negative baseline urine culture, antibiotic prophylaxis significantly reduced the rate of postoperative fever and other complications [305]. Based on three meta-analyses, pooling data from small series with varying quality an extended course of pre-operative prophylactic antibiotics prior to PCNL compared to a single dose before anaesthesia significantly reduced post-operative sepsis and fever in patients with an a priori increased risk of infection [288, 306, 307]. In an RCT including only moderate to high-risk infection patients (patients with pre-operative stents/nephrostomy or positive urine culture), a seven-day course of pre-operative antibiotics reduced the risk of post-PCNL sepsis threefold in comparison to a two-day course [308]. In studies that did not specify the risk of the patient population, a single dose of antibiotic prophylaxis administered at induction was equivalent to an extended pre-operative course [307, 309]. In contrast to this, a prolonged course of post-operative antibiotics was not superior to a single dose pre-operatively [288, 307].

As national and regional antibiotic resistance patterns can differ significantly, the choice of antibiotic prophylaxis should be tailored to institutional or regional antimicrobial susceptibility [304].

Recommendations	Strength rating
Obtain a urine culture or perform urinary microscopy before any treatment is planned.	Strong
Exclude or treat urinary tract infections prior to stone removal.	Strong
Offer peri-operative antibiotic prophylaxis to all patients undergoing endourological	Strong
treatment.	

3.4.8.2 Antithrombotic therapy and stone treatment

Patients with a bleeding disorder, or receiving antithrombotic therapy, should be referred to an internist for appropriate therapeutic measures before deciding on stone management [310-314]. In patients with an uncorrected bleeding disorder, the following are at elevated risk of haemorrhage or perinephric haematoma (PNH) (high-risk procedures):

- SWL (hazard ratio of PNH up to 4.2 during anti-coagulant/anti-platelet medication) [315]
- PCNL;
- percutaneous nephrostomy;
- laparoscopic surgery;
- open surgery [310].

Shock wave lithotripsy is feasible and safe after correction of the underlying coagulopathy [316, 317]. In the case of an uncorrected bleeding disorder or continued antithrombotic therapy, URS, in contrast to SWL and PCNL, might offer an alternative approach since it is associated with less morbidity [318-320]. Despite the appropriate cessation of anti-platelet agents, following standardised protocols, prolonged haematuria in tube drainage after PCNL has been reported [321]. Only data on flexible URS are available which support the superiority of URS in the treatment of proximal ureteral stones [322, 323]. Although URS is safe in patients with bleeding disorders or anticoagulation, an individualised patient approach is necessary [320].

Low-risk bleeding procedures	 Cystoscopy Flexible cystoscopy Ureteral catheterisation Extraction of ureteral stent Ureteroscopy 	
High-risk bleeding procedures	Shock wave lithotripsyPercutaneous nephrostomyPercutaneous nephrolithotomy	

Table 3.9: Risk stratification for bleeding [312-314, 324]

Table 3.10: Suggested strategy for antithrombotic therapy in stone removal [312-314]

(In collaboration with a cardiologist/internist weigh the risks and benefits of discontinuation of therapy, vs. delaying elective surgical procedures).

Medication/Agent	Bleeding risk of	Risk of thromboembolism		
	planned procedure	Low risk	High risk	
Warfarin	Low-risk procedure	May be continued	Bridging therapy	Bridging therapy
Dabigatran Rivaroxaban Apixaban	High-risk procedure	May be temporarily discontinued at appropriate interval. Bridging therapy is strongly recommended.	Bridging therapy	Bridging therapy

Aspirin	Low-risk procedure	Continue	Continue	Elective surgery: postpone. Non-deferrable surgery: continue.
	High-risk procedure	Discontinue	Elective surgery: postpone. Non-deferrable surgery: continue, if it is possible.	Elective surgery: postpone. Non-deferrable surgery: continue.
Thienopyridine agents (P2Y12 receptor inhibitors)	Low-risk procedure	Discontinue five days before intervention. Resume within 24-72 hours with a loading dose.	Continue	Elective surgery: postpone. Non-deferrable surgery: continue.
	High-risk procedure	Discontinue five days before intervention and resume within 24-72 hours with a loading dose.	Elective surgery: postpone. Non-deferrable surgery: discontinue five days before procedure and resume within 24-72 hours with a loading dose. Bridging therapy -glycoprotein IIb/IIIa inhibitors if aspirin is discontinued.	Elective surgery: postpone. Non-deferrable surgery: discontinue five days before procedure and resume within 24-72 hours, with a loading dose. Bridging therapy -glycoprotein Ilb/IIIa inhibitors.

3.4.8.2.1 Summary of evidence and recommendations for antithrombotic therapy and stone treatment

Summary of evidence	LE
Active surveillance is indicated in patients at high risk for thrombotic complications in the presence of an asymptomatic calyceal stone.	4
The temporary discontinuation, or bridging of antithrombotic therapy in high-risk patients, should be discussed with the internist.	3
Retrograde (flexible) URS stone removal is associated with less morbidity in patients when antithrombotic therapy cannot be discontinued.	2a

Recommendations	Strength rating
Offer active surveillance to patients at high risk of thrombotic complications in the presence of an asymptomatic calyceal stone.	Weak
Decide on temporary discontinuation, or bridging of antithrombotic therapy in high-risk patients, in consultation with the internist.	Strong
Retrograde (flexible) URS is the preferred intervention if stone removal is essential and antithrombotic therapy cannot be discontinued since it is associated with less morbidity.	Strong

3.4.8.3 Obesity

A high BMI can pose a higher anaesthetic risk and a lower success rate after SWL and PCNL and may influence the choice of treatment [325].

3.4.8.4 Stone composition

Stones composed of brushite, calcium oxalate monohydrate, or cystine are particularly hard, as well as homogeneous stones with a high density on NCCT [326, 327]. Percutaneous nephrolithotomy or RIRS and URS are alternatives for removal of large SWL-resistant stones.

Recommendations	Strength rating
Consider the stone composition before deciding on the method of removal, based on patient	Strong
history, former stone analysis of the patient or Hounsfield unit on unenhanced computed	
tomography.	
Attempt to dissolve radiolucent stones.	Strong

3.4.8.5 Contraindications of procedures

Contraindications of extracorporeal SWL

There are several contraindications to the use of extracorporeal SWL, including:

- pregnancy, due to the potential effects on the foetus [328];
- bleeding disorders, which should be compensated for at least 24 hours before and 48 hours after treatment [329];
- uncontrolled UTIs;
- · severe skeletal malformations and severe obesity, which prevent targeting of the stone;
- arterial aneurysm in the vicinity of the stone [330];
- anatomical obstruction distal to the stone.

Contraindications of URS

Apart from general problems, for example with general anaesthesia or untreated UTIs, URS can be performed in all patients without any specific contraindications.

Contraindications of PCNL

Patients receiving anti-coagulant therapy must be monitored carefully pre- and post-operatively. Anti-coagulant therapy must be discontinued before PCNL [320]. Other important contraindications include:

- untreated UTI;
- tumour in the presumptive access tract area;
- potential malignant kidney tumour;
- pregnancy (Section 3.4.14.1).

General contraindication for endourological procedures

Endourological interventions do not adversely affect renal function although care must be taken in those with poor pre-operative renal function, diabetes and hypertension [331]. However, a meta-analysis, based on low quality evidence, suggests that patients with impaired renal function and stone disease, may in fact benefit from the procedure to preserve or increase their renal function [332].

3.4.9 Specific stone management of ureteral stones

3.4.9.1 Conservative treatment/observation

There are only limited data regarding spontaneous stone passage according to stone size [333, 334].

Spontaneous stone passage was reported for 49-52% of upper ureteral stones, 58-70% of mid ureteral stones and 68-83% of distal ureteral stones. Considering stone size almost 75% of stones < 5 mm and 62% of stones ≥ 5 mm passed spontaneously, with an average time to stone expulsion about 17 days (range 6-29 days) [333, 335]. Considering both size and location, stones of <5mm in the distal ureteral have a 89% chance of spontaneous passage, while 71% of stones <5mm located in the upper ureter still pass spontaneously [333]. The Panel is aware of the fact that spontaneous stone expulsion decreases with increasing stone size and that there are differences between individual patients.

3.4.9.2 Pharmacological treatment, medical expulsive therapy

Medical expulsive therapy should only be used in informed patients if active stone removal is not indicated. Treatment should be discontinued if complications develop (infection, refractory pain, deterioration of renal function). In the case of known uric acid stones in the distal ureter, a combination of alkalinisation with tamsulosin can increase the frequency of spontaneous passage. For details see Sections 3.4.3 and 3.4.4.

3.4.9.3 Indications for treatment of ureteral stones

Indications for removal of ureteral stones are [176, 334, 336]:

- stones with a low likelihood of spontaneous passage;
- persistent pain despite adequate analgesic medication;
- persistent obstruction;
- renal insufficiency (renal failure, bilateral obstruction, or single kidney).

3.4.9.4 Selection of procedure for removal of ureteral stones

The selection of the procedure depends on many factors, including stone-related factors, such as size, location, and density, as well as patient-related factors, such as body habitus, urinary anatomy, bleeding disorders, and other potential comorbidities. These and their influence on the outcomes of each of the procedures should be considered when counselling patients.

As previously mentioned in this guideline, CT imaging can provide useful information that may influence the choice of treatment. A meta-analysis outlines that increasing stone density, stone burden, skin-to-stone distance, and hydronephrosis can negatively impact the success of the shockwave lithotripsy [337].

Overall, SFRs after URS or SWL for ureteral stones are comparable. However, larger stones achieve earlier stonefree status with URS.

A large multi-center non-inferiority trial compared URS to SWL for ureteral stones. When excluding patients that had spontaneously passed their stone prior to treatment, SWL could not be considered non-inferior to URS with only 12% of patients needing further intervention after URS in comparison to 26% in the SWL arm [253]. In contrast to the success of SWL, comparative data on the outcomes of URS depending on patients' BMI has shown URS to be as effective and safe in obese and morbidly obese patients as in non-obese patients [338].

The Panel performed a systematic review to assess the benefits and harms of URS compared to SWL [339]. Compared with SWL, URS was associated with a significantly greater SFR of up to four weeks, but the difference was not significant at three months in the included studies. Ureteroscopy was associated with fewer retreatments and the need for secondary procedures but with a higher need for adjunctive procedures, higher complication rates, and longer hospital stay. Counterbalancing for URS's higher SFRs, SWL is associated with lower morbidity. Success rates and complications of URS are not impacted by previous unsuccessful SWL [340]. Clavien-Dindo grade complications were if reported, less frequent in patients treated with SWL [175].

Apart from the treatment modality, the timing of treatment may also be of importance. Primary or emergent ureteroscopy appears to be a safe and feasible procedure for patients presenting with renal colic due to an obstructive ureteral stone [341], without however increasing the stone-free rate. These results however are based mainly on low level of evidence reports and should be interpreted with caution [341]. Similarly, SWL can be performed in the acute setting or electively allowing a trial of spontaneous passage. In contrast to acute URS, SWL in the acute setting does provide an increased stone-free rate and reduced need for auxiliary procedures [342].

For large proximal ureteral stones, a percutaneous antegrade approach may provide better stone-free results than a retrograde ureteroscopic approach [343].

Bleeding disorder

Ureteroscopy can be performed in patients with bleeding disorders, with a moderate increase in complications (see also Section 3.4.8.2) [320].

3.4.9.4.1 Summary of evidence and recommendations for selection of procedure for active removal of ureteral stones

Summary of evidence	LE
Observation is feasible in informed patients who develop no complications (infection, refractory pain, deterioration of renal function).	2a
Medical expulsive therapy seems to be efficacious for treating patients with ureteral stones who are amenable to conservative management. The greatest benefit might be among those with > 5 mm (distal) stones.	1a
Compared with SWL, URS was associated with significantly greater SFRs up to four weeks, but the difference was not significant at three months in the included studies.	1a
Ureteroscopy was associated with fewer retreatments and need for secondary procedures, but with a higher need for adjunctive procedures, greater complication rates and longer hospital stay.	1a
In the case of severe obesity, URS is a more promising therapeutic option than SWL.	2b

Recommendations	Strength rating
If active removal is not indicated (Section 3.4.9.3) in patients with newly diagnosed small* ureteral stones, observe patient initially with periodic evaluation.	Strong
Offer α -blockers as medical expulsive therapy as one of the treatment options for (distal) ureteral stones > 5 mm**.	Strong
Inform patients that ureteroscopy (URS) has a better chance of achieving stone-free status with a single procedure.	Strong
Inform patients that URS has higher complication rates when compared to shock wave lithotripsy.	Strong
Use URS as first-line therapy for ureteral (and renal) stones in cases of severe obesity.	Strong

*See stratification data [176].

** Alpha-blockers are an off-label treatment for this indication

SWL = shock wave lithotripsy; URS = Ureteroscopy.

3.4.10 Specific stone management of renal stones

The natural history of small, non-obstructing asymptomatic calculi is not well defined, and the risk of progression is unclear. There is still no consensus on the follow-up duration, timing, and type of intervention. In an RCT patients with small asymptomatic renal stones, who were not treated actively, had a higher incidence of relapse [344].

3.4.10.1 Conservative treatment (observation)

Observation of renal stones, especially in calyces, depends on their natural history (Section 3.4.10.3). The recommendations provided are not supported by high-level literature [345]. There is a prospective trial supporting annual observation for asymptomatic inferior calyceal stones, < 10 mm. In case stone growth is detected, the follow-up interval should be lowered [346]. Intervention is advised for growing stones > 5 mm [347]. In a systematic review of patients with asymptomatic renal stones on active surveillance spontaneous stone passage rates varied from 3-29%, symptom development from 7-77%, stone growth from 5-66%, surgical intervention from 7-26% [345].

3.4.10.2 Pharmacological treatment of renal stones

Dissolution therapy seems to be an option for uric acid stones. See sections 3.4.4. and 3.4.8.4.

3.4.10.3 Indications for stone removal of renal stones Indications for the removal of renal stones include:

- stone growth;
- stones in high-risk patients for stone formation;
- obstruction caused by stones;
- infection;
- symptomatic stones (e.g., pain or haematuria) [348];
- patient preference;
- comorbidity;
- the social situation of the patient (e.g., profession or traveling);

3.4.10.4 Selection of procedure for active removal of renal stones For general recommendations and precautions see Section 3.4.8.

3.4.10.4.1 Stones in the renal pelvis or upper/middle calyces

Shock wave lithotripsy, PCNL and RIRS are available treatment modalities for renal calculi. While PCNL efficacy is hardly affected by the stone size, the SFRs after SWL or URS are inversely proportional to stone size [253, 349-355]. Although multiple treatments or sessions may be needed shock wave lithotripsy achieves good SFRs for stones up to 20 mm, except for those at the lower pole [351, 356, 357]. When SWL is considered, stones with density > 1,000 HU (and with high homogeneity) on non-contrast-enhanced CT are less likely to be disintegrated [43]. Endourology is considered an alternative because of the reduced need for repeated procedures and consequently a shorter time until stone-free status is achieved. For stones > 10 mm, mPCNL achieves a higher SFR than RIRS or SWL, but carries a higher risk of bleeding and is associated with a longer hospital stay; however, there is a high degree of heterogeneity among the included studies [353, 355]. Stones > 20 mm should be treated primarily by PCNL, because SWL often requires multiple treatments, and is associated with an increased risk of ureteral obstruction (colic or steinstrasse) with a need for adjunctive procedures (Figure 3.2) [358]. Retrograde renal surgery cannot be recommended as first-line treatment for stones > 20 mm in uncomplicated cases as SFRs decrease, and staged procedures will be required [359-361]. However, it may be a first-line option in patients where PCNL is not an option or contraindicated or in selected patients [362]. The combination of PCNL and RIRS may be a good alternative for the treatment of complex renal stones compared to standard PCNL; however, the level of the existing evidence is low [265].

3.4.10.4.2 Stones in the lower renal pole

The stone clearance rate after SWL seems to be lower for stones in the inferior calyx than for other intra-renal locations. Although the disintegration efficacy of SWL is not limited compared to other locations, the fragments often remain in the calyx and cause recurrent stone formation. The reported SFR of SWL for lower pole calculi is 25-95%. The preferential use of endoscopic procedures is supported by some current reports, even for stones < 1 cm [350, 352, 356, 358, 361, 363-370].

The following can impair successful stone treatment by SWL [371-377]:

- steep infundibular-pelvic angle;
- long calyx;
- long skin-to-stone distance;
- narrow infundibulum;
- shock wave-resistant stones (calcium oxalate monohydrate, brushite, or cystine).

Further anatomical parameters cannot yet be established. Supportive measures such as inversion, vibration or hydration may facilitate stone clearance (See 3.4.5 SWL) [174, 378, 379]. If there are negative predictors for SWL, PCNL and RIRS might be reasonable alternatives, even for smaller calculi [363]. Retrograde renal surgery seems to have comparable efficacy to SWL [350, 356, 358, 380]. Clinical experience has suggested a higher SFR of RIRS compared to SWL but at the expense of greater invasiveness. Depending on operator skills, stones up to 3 cm can be treated by RIRS [362, 381]. However, staged procedures are frequently required. Although mini-PCNL has the highest success rate for the treatment of lower pole stones up to 2 cm, it comes at the expense of a higher complication rate and longer hospital stay [355].

In complex stone cases, open or laparoscopic approaches are possible alternatives although they are infrequently used.

3.4.10.5 Summary of evidence and recommendations for the management of renal stones

Summary of evidence	LE
It is still debatable whether renal stones should be treated, or whether annual follow-up is sufficient for asymptomatic calyceal stones that have remained stable for six months.	4
Although the question of whether asymptomatic calyceal stones should be treated is still unanswered, stone growth, <i>de novo</i> obstruction, associated infection, and acute and/or chronic pain are indications for treatment.	3
Percutaneous nephrolithotomy is indicated in renal stones > 2 cm as primary option.	1a

Recommendations	Strength rating
Offer active treatment for renal stones in case of stone growth, <i>de novo</i> obstruction, associated infection, and acute and/or chronic pain.	Weak
Evaluate stone composition before deciding on the method of removal, based on patient history, former stone analysis of the patient or Hounsfield unit (HU) on unenhanced computed tomography.	Strong
Perform percutaneous nephrolithotomy (PCNL) as first-line treatment of larger stones > 2 cm.	Strong
Treat larger stones (> 2 cm) with flexible ureteroscopy or shock wave lithotripsy (SWL), in cases where PCNL is not an option. However, in such instances there is a higher risk that a follow-up procedure and placement of a ureteral stent may be needed.	Strong
Perform PCNL or retrograde intrarenal surgery for the lower pole, even for stones > 1 cm, as the efficacy of SWL is limited (depending on favourable and unfavourable factors for SWL).	Strong
Perform PCNL or retrograde intrarenal surgery for the lower pole, even for stones > 1 cm, as the efficacy of SWL is limited (depending on favourable and unfavourable factors for SWL).	Strong

Figure 3.2: Treatment algorithm for renal stones (if/when active treatment is indicated)

*The term 'Endourology' encompasses all PCNL and URS interventions.

PCNL = percutaneous nephrolithotomy; RIRS = retrograde intrarenal surgery; SWL = shock wave lithotripsy; URS = ureteroscopy

3.4.11 Laparoscopy and open surgery

Advances in SWL and endourological surgery (URS and PCNL) have significantly decreased the indications for open or laparoscopic stone surgery [382-387]. There is a consensus that most complex stones, including partial and complete staghorn stones, should be approached primarily with PCNL. Additionally, a combined approach with PCNL and RIRS may also be an appropriate alternative. However, if percutaneous approaches are not likely to be successful, or if multiple endourological approaches have been performed unsuccessfully; open or laparoscopic surgery may be a valid treatment option [388-392].

Few studies have reported laparoscopic stone removal. These procedures are usually reserved for special cases. When expertise is available, laparoscopic ureterolithotomy can be performed for large proximal ureteral stones as an alternative to URS or SWL [393, 394]. These more invasive procedures have yielded high SFRs and lower auxiliary procedure rates [196, 205, 389]. A systematic review showed no difference in the post-operative phase for stented or unstented laparoscopic ureterolithotomy [389].

Laparoscopic pyelolithotomy could be offered for solitary stones > 2 cm located in the renal pelvis as an alternative to PCNL [390]. In addition, in selected cases with an extrarenal and dilated pelvis, RLP can be considered as an alternative management of staghorn calculi [395].

A few studies with limited numbers of patients have reported using robotic surgery in the treatment of urinary stones [391]. Open surgery should be considered as the last treatment option after all other possibilities have been explored.

Studies on laparoscopy should be interpreted with caution due to their low design and quality of evidence.

3.4.11.1 Recommendation for laparoscopy and open surgery

Recommendation	Strength rating
Offer laparoscopic or open surgical stone removal in rare cases in which shock wave	Strong
lithotripsy, retrograde or antegrade ureteroscopy and percutaneous nephrolithotomy fail, or	
are unlikely to be successful.	

3.4.12 Steinstrasse

Steinstrasse is an accumulation of stone fragments or stone gravel in the ureter and may interfere with the passage of urine [396]. Steinstrasse occurs in 4% of cases of SWL [175, 183], and the major factor in the development of steinstrasse formation is stone size [397].

A major problem of steinstrasse is ureteral obstruction, which may be silent in up to 23% of cases. A MA including eight RCTs (n = 876) suggested a benefit of stenting before SWL in terms of steinstrasse formation but did not result in a benefit on SFRs or less auxiliary treatments [136]. When steinstrasse is asymptomatic, conservative treatment is an initial option. Medical expulsion therapy increases stone expulsion and reduces the need for endoscopic intervention [398, 399]. Ureteroscopy and SWL are effective in the treatment of steinstrasse [185, 400]. In the event of UTI or fever, the urinary system should be decompressed, preferably by percutaneous nephrostomy [113, 401].

3.4.12.1 Summary of evidence and recommendations for steinstrasse

Summary of evidence	LE
Medical expulsion therapy increases the stone expulsion rate of steinstrasse.	1b
Ureteroscopy is effective for the treatment of steinstrasse.	3
Only low-level evidence is available, supporting SWL or URS for the treatment of steinstrasse.	4

Recommendations	Strength rating
Treat steinstrasse associated with urinary tract infection (UTI)/fever preferably with	Weak
percutaneous nephrostomy.	
Treat steinstrasse when large stone fragments are present with shock wave lithotripsy or	Weak
ureteroscopy (in absence of signs of UTI).	

3.4.13 Management of patients with residual stones

Following initial treatment with SWL, URS or PCNL, residual fragments may remain and require additional intervention [347, 402-405]. Most of these studies indicate that initial imaging is performed on the first day or the first week after treatment. However, false positive results from dust or residual fragments, that will pass spontaneously without causing any stone-related event, might lead to over-treatment. Therefore, imaging at four weeks seems most appropriate [406-408]. Compared to US, KUB and IVU, NCCT scan has a higher sensitivity to detect small residual fragments after definitive treatment of ureteral or kidney stones [409, 410].

A SR/MA examining residual fragments following any treatment has demonstrated that around a third of patients with either dust or fragments </= 4 mm experience disease progression and re-intervention within three years, whilst a third have spontaneous passage within two years regardless of imaging modality follow-up. For fragments > 4 mm, there are fewer studies, but these suggest low spontaneous passage rates and high intervention rates [411].

Although NCCT has the highest sensitivity to detect residual fragments, this must be balanced to the exposure to ionising radiation when compared with KUB and US. Recurrence risk in patients with residual fragments after treatment of infection stones is higher than for other stones [412].

3.4.13.1 Recommendation for management of patients with residual stones

Recommendation	Strength rating
Treat residual fragments > 4 mm.	Weak

3.4.14 Management of specific patient groups

3.4.14.1 Management of urinary stones and related problems during pregnancy

Clinical management of a pregnant patient with urolithiasis is complex and demands close collaboration between the patient, radiologist, obstetrician, and urologist [64]. For diagnostic imaging see Section 3.3.1. Patients with urolithiasis may be at increased risk of developing adverse maternal or neonatal outcomes [413].

Conservative approaches for symptomatic hydronephrosis as well as for ureteric calculi are the

preferred initial management option in pregnant patients [414, 415].

If spontaneous passage does not occur, or if complications develop (e.g., intractable symptoms, severe hydronephrosis, spontaneous renal fornix rupture [416] or induction of premature labour), placement of a ureteral stent or a percutaneous nephrostomy tube is necessary as it is more effective than conservative treatment for symptom relief [417-419].

In the treatment of renal stones during pregnancy, when a stent is necessary, PCNL versus ureteral stent placement does not confer a significant difference in rates of adverse pregnancy events. However, ureteral stent placement was associated with a lower incidence of hospital admissions, emergency department visits, exchange procedures, and new UTIs or pyelonephritis [420].

Ureteroscopy has become a reasonable alternative in these situations [408, 421]. When compared to temporary ureteral JJ stenting until after delivery, ureteroscopy resulted in fewer needs for stent exchanges, less irritative LUTS and better patient satisfaction [422, 423].

Non-urgent ureteroscopy in pregnant women is best performed during the second trimester, by an experienced urologist. Counselling of the patient should include access to neonatal and obstetric services [72].

Although feasible, percutaneous removal of renal stones during pregnancy remains an individual decision and should be performed only in experienced centres [424]. Pregnancy remains an absolute contraindication for SWL.

3.4.14.1.1 Summary of evidence and recommendation for the management of urinary stones and related problems during pregnancy

Summary of evidence	LE
Stent insertion seems to be more effective than conservative treatment in the management of symptomatic moderate-to-severe hydronephrosis during pregnancy.	1a
Ureteroscopy is a reasonable alternative to avoid long-term stenting/drainage.	1b
There is a higher tendency for stent encrustation during pregnancy.	3

Recommendation	Strength rating
Treat all uncomplicated cases of urolithiasis in pregnancy conservatively (except when there	Strong
are clinical indications for intervention).	

3.4.14.2 Management of stones in patients with urinary diversion

Aetiology

Patients with urinary diversion are at high risk for stone formation in the renal collecting system and ureter or in the conduit or continent reservoir [425, 426]. Metabolic factors (hypercalciuria, hyperoxaluria and hypocitraturia), infection with urease-producing bacteria, foreign bodies, mucus secretion, and urinary stasis are responsible for stone formation [427] (section 3.1.3). One study has shown that the risk for recurrent upper tract stones in patients with urinary diversion subjected to PCNL was 63% at five years [428].

Management

Smaller upper-tract stones can be treated effectively with SWL [429, 430]. In most cases, endourological techniques are necessary to achieve stone-free status [431]. In individuals with long, tortuous conduits or with invisible ureter orifices, a retrograde endoscopic approach might be difficult or impossible [432].

For stones in the conduit, a trans-stomal approach can be used to remove all stone material (along with the foreign body) using standard techniques, including intracorporeal lithotripsy and flexible endoscopes. Trans-stomal manipulations in continent urinary diversion must be performed carefully to avoid disturbance of the continence mechanism [433].

Before considering any percutaneous approach in these cases, CT should be undertaken to assess the presence of overlying bowel, which could make this approach unsafe [434], and if present, a surgical approach should be considered.

Prevention

Recurrence risk is high in patients with urinary diversion [428]. Metabolic evaluation and close follow-up are necessary to obtain the risk parameters for effective long-term prevention. Preventive measures include medical management of metabolic abnormalities, appropriate therapy of urinary infections, and hyper-diuresis or regular irrigation of continent reservoirs [435].

3.4.14.2.1 Summary of evidence and recommendation for the management of stones in patients with urinary diversion

Summary of evidence	LE
The choice of access depends on the feasibility of orifice identification in the conduit or bowel	4
reservoir. Whenever a retrograde approach is impossible, percutaneous access with antegrade	
ureteroscopy is the alternative.	

Recommendation	Strength rating
Perform percutaneous lithotomy to remove large renal stones in patients with urinary	Strong
diversion, as well as for ureteral stones that cannot be accessed via a retrograde approac	h,
or that are not amenable to shock wave lithotripsy.	

3.4.14.3 Management of stones in patients with neurogenic bladder

Aetiology, clinical presentation, and diagnosis

Patients with neurogenic bladder develop urinary calculi because of additional risk factors such as bacteriuria, hydronephrosis, VUR, renal scarring and lower urinary tract reconstruction [436, 437]. The most common causes are urinary stasis and infection (Section 3.1.3). Indwelling catheters and surgical interposition of bowel segments for treatment of bladder dysfunction both facilitate UTI. Although calculi can form at any level of the urinary tract, they occur more frequently in the bladder; especially if bladder augmentation has been performed [438, 439].

Diagnosis of stones may be difficult and delayed in the absence of clinical symptoms due to

sensory impairment and vesicourethral dysfunction. Difficulties in self-catheterisation should lead to suspicion of bladder calculi. Imaging studies are needed (US, CT) to confirm the clinical diagnosis prior to surgical intervention.

Management

Management of calculi in patients with neurogenic bladder is similar to that described in Section 3.3. Any surgery in these patients must be performed under general anaesthesia because of the impossibility of using spinal anaesthesia. Bone deformities often complicate positioning on the operating table [440]. The risk of stone formation after augmentation cystoplasty in immobile patients with sensory impairment can be significantly reduced by irrigation protocols [435].

For efficient long-term stone prevention in patients with neurogenic bladder, correction of the metabolic disorder, appropriate infection control, and restoration of normal storing/voiding function of the bladder are needed.

3.4.14.3.1 Summary of evidence and recommendation for the management of stones in patients with neurogenic bladder

Summary of evidence	LE
Patients undergoing urinary diversion and/or suffering from neurogenic bladder dysfunction are at risk	3
for recurrent stone formation.	

3.4.14.4 Management of stones in patients with transplanted kidneys

Stones in transplanted kidneys can either be transplanted or present *de novo* allograft stones. Usually, they are detected by routine US examination, followed by NCCT in cases of unclear diagnosis [441].

Aetiology

Transplant patients depend on their solitary kidneys for renal function. Impairment causing urinary stasis/ obstruction, therefore, requires immediate intervention or drainage of the transplanted kidney. Stones in kidney allografts have an incidence of 2% [441]. Risk factors for *de novo* stone formation in these patients are multi-fold:

- Immunosuppression increases the infection risk, resulting in recurrent UTIs.
- Hyper-filtration, excessively alkaline urine, renal tubular acidosis (RTA), and increased serum calcium caused by persistent tertiary hyperparathyroidism [442] are biochemical risk factors.

Management

Selecting the appropriate technique for stone removal in a transplanted kidney is difficult, although management principles are like those applied in other single renal units [443-445]. Additional factors such as transplant function, coagulative status, and anatomical alterations due to the iliac position of the organ, directly influence the surgical strategy.

For large or ureteral stones, careful percutaneous access and subsequent antegrade endoscopy are more favourable. The introduction of small flexible ureteroscopes and the holmium laser has made URS a valid treatment option for transplant calculi; however, one must be aware of potential injury to adjacent organs [444, 446, 447]. Retrograde access to transplanted kidneys can be difficult due to the anterior location of the ureteral anastomosis, and ureteral tortuosity [448-450]. Treatment of donor stones may be needed pre-transplant and increases the pool available for renal transplants. Post-transplant stone disease may also need treatment to maintain the allograft function. A systematic review evaluating the outcomes of pre- vs. post-transplant URS demonstrated a 100% SFR with an overall 7.5% complication rate, compared to a SFR of 60-100% with an overall complication rate of 12.9% for post-transplant URS; most complications were Clavien 1 [451]. A SR shows that SWL is also a safe and effective option for *de novo* stones after transplantation, with an overall SFR of 81% and a complication rate of 17.2% [452].

3.4.14.4.1 Summary of evidence and recommendation for the management of stones in patients with transplanted kidneys

Summary of evidence	LE
Conservative treatment for small asymptomatic stones is only possible under close surveillance and in absolutely compliant patients.	3
Shock wave lithotripsy for small calyceal stones is an option with minimal risk of complication, but localisation of the stone can be challenging.	3

Recommendation	Strength rating
Offer patients with transplanted kidneys any of the contemporary management options,	Strong
including shock wave lithotripsy, flexible ureteroscopy and percutaneous nephrolithotomy.	

3.4.14.5 Special problems in stone removal

Table 3.11: Special problems in stone removal [453]

Calyceal diverticulum stones	 SWL, PCNL [454] (if possible) or RIRS [454, 455]. Can also be removed using laparoscopic retroperitoneal surgery [456, 457]. Patients may become asymptomatic due to stone disintegration (SWL), whilst well-disintegrated stone material remains in the original position due to narrow calyceal neck.
Horseshoe kidneys	 Can be treated in line with the options described above [458-460]. Passage of fragments after SWL might be poor. Acceptable SFRs (up to 76%) with low major complication rates (2.4%) can be achieved with flexible ureteroscopy [458-460].
Stones in pelvic kidneys	• SWL, RIRS, PCNL or laparoscopic surgery [461].
Stones formed in a continent reservoir	Each stone must be considered and treated individually.
Patients with obstruction of the UPJ	 When outflow abnormality requires correction, stones can be removed by PCNL together with percutaneous endopyelotomy or open/laparoscopic reconstructive surgery. URS together with endopyelotomy with Ho:YAG laser [462].

3.4.15 Management of stones in children

The true incidence of nephrolithiasis in children remains unclear due to the global lack of large epidemiological studies. Data derived from nationwide epidemiological studies, studies performed in different counties worldwide [463] and large-scale databases [464, 465] indicate that the incidence and prevalence of paediatric urinary stone disease have increased over the last few decades. Although boys are most commonly affected in the first decade of life [466] the greatest increase in incidence has been seen in older female adolescents [463]. Stone composition is similar in children as in adults, with a predominance of calcium oxalate stones. Compared to historical data, metabolic abnormalities responsible for stone formation are less commonly identified in children nowadays [467-469]. Hypocitraturia, low urine volume and hypercalciuria predominate [84, 467-469]. Age may affect the predominant metabolic abnormality with hypercalciuria and hypocitraturia being the most common disorder present in children < 10 and > 10 years old, respectively [469]. Genetic or systemic diseases (e.g., cystinuria or nephrocalcinosis) contributing to stone formation are relatively frequent in children accounting for less than 17% of the identifying causes [467, 470]. The role of diet remains unclear in children, although there is some evidence that children are drinking less water and taking greater daily amounts of sodium than is recommended [471-473].

For diagnostic procedures see Section 3.3.3.2, for acute decompression see Section 3.4.2. and for metabolic evaluation see Chapter 4.

3.4.15.1 Clinical presentation

Children with urinary stones can be asymptomatic or present with non-specific symptoms that necessitate a high index of suspicion for proper diagnosis. Symptoms are age-dependent with infants presenting with crying,

irritability and vomiting in 40% of cases [474] while in older children flank pain, micro or gross haematuria and recurrent UTIs are more common [475].

3.4.15.2 Conservative management

There is a lack of evidence on conservative management of paediatric stones with evidence for ureteric calculi coming from the placebo arms of medical expulsive trials, while evidence for renal stones comes from small cohort studies, either on primary stones [476, 477] or residual fragments remained after SWL, RIRS or PCNL [478]. Expectant management for single, asymptomatic lower-pole renal stones could be the initial approach with increased odds of stone passage, especially in patients with non-struvite, non-cystine stones < 7 mm, with no anatomic abnormalities [476]. Intervention may be needed for stones located elsewhere independently of their size [476-478].

3.4.15.3 Medical expulsive therapy in children

There are limited studies on MET as off-label expulsive therapy for children with ureteral stones up to 10 mm which show conflicting outcomes. Several systematic reviews and meta-analyses, including six RCTs and one conference abstract of an RCT, have been performed, all unanimously reporting that the use of alphablockers for distal ureteric stones increases the stone-free or stone expulsion rate [479-481]. The use of alphablockers also reduces the stone expulsion time and decreases pain episodes and analgesia demand with the disadvantage of more side-effects such as headache and nasal congestion [480, 481].

3.4.15.4 Extracorporeal shock wave lithotripsy

Shock wave lithotripsy is still the first-line treatment for most ureteral stones in children. However, it is less likely to be successful for stones > 10 mm in diameter, impacted stones, calcium oxalate monohydrate or cystine stones, or for stones in children with unfavourable anatomy and in whom localisation is difficult [482].

Studies on extracorporeal SWL in children suggest an overall SFR of 70-90%, retreatment rate of 4-50% and need for auxiliary procedures in 4-12.5% of cases [483-487]. A MA of fourteen studies reporting on 1,842 paediatric patients treated with SWL found significantly higher SFR for stones < 10 mm than for stones > 10 mm and higher retreatment rates as the stone size increased [482]. For best clinical practice see Section 3.4.5. A MA on slow SWL vs. rapid SWL for renal stones revealed very low-quality evidence about the effects of SWL on SFRs, serious adverse events or complications of treatment and secondary procedures for residual fragments [479]. Shock wave lithotripsy is well tolerated; however, good treatment outcomes are more likely to require the administration of general anaesthesia to children. With improvements in modern (second and third-generation) lithotripters, successful treatment using intravenous sedation, patient-controlled analgesia or no medication at all has been increasingly performed in a select population of older, co-operative children [488].

Based on the results of a MA which compared SWL to dissolution therapy for intra-renal stones, and SWL to ureteroscopy with holmium laser or pneumatic lithotripsy for renal and distal ureteric stones, no firm conclusions can be drawn about the effects of SWL on SFR, serious adverse events or complications of treatment and secondary procedures for residual fragments [479]. When SWL was compared to minipercutaneous nephrolithotomy for lower pole renal stones 1-2 cm in size SWL resulted in lower SFRs (RR: 0.88, 95% CI: 0.80 - 0.97; moderate-quality evidence) and higher rates of secondary procedures (RR: 2.50, 95% CI: 1.01 - 6.20; low-quality evidence); however, SWL showed less severe adverse events (RR: 0.13, 95% CI: 0.02 - 0.98; low-quality evidence) [489].

3.4.15.5 Endourological procedures

Rigid/semi-rigid ureteroscopy

In recent years ureteroscopy is increasingly used in children with ureteral stones [490]. Ureteroscopy proved to be effective with SFR of 81-98% [491-493], retreatment rates of 6.3%-10% [494] and complication rates of 1.9-23% [491-493, 495]. Similar to adults, routine stenting is not necessary before URS. Pre-stenting may facilitate URS, increase SFR and decrease complication rates [496, 497].

Flexible ureteroscopy/retrograde intrarenal surgery

Retrograde intra-renal surgery with flexible ureteroscopes (FURS) has become an efficacious treatment modality for paediatric renal stones. Studies report SFRs of 76-100%, retreatment rates of 0-19% and complication rates of 0-28% [498-501]. Younger age, cystine composition [502], large stone diameter [501] and lack of pre-stenting predispose to FURS failure in children [496]. A large global study across eight centres shows an SFR of 75.5%; although complications were minor, they were higher in patients < 5 years of age [503].

Although high-level evidence is lacking to support a strong recommendation [479], FURS may be a particularly effective treatment option for lower calyceal stones in the presence of unfavourable factors for SWL [493, 499, 504].

For large and complex kidney stones RIRS has a significantly lower SFR compared to PCNL (71% vs. 95%), but is associated with less radiation exposure, lower complication rates, and a shorter hospital stay [505]. Similarly, retrospective data indicate that RIRS may achieve lower SFRs compared to micro percutaneous surgery in favour of shorter operative time, shorter fluoroscopy time, and less hospitalisation time [506, 507]. A published MA confirmed these results [508].

Percutaneous nephrolithotomy

Indications for PCNL in children are like those in adults and include renal stones > 2 cm, or smaller stones resistant to SWL and ureteroscopic treatment. Reported SFRs with paediatric PCNL are 71.4-95% after a single session [505-507, 509, 510] with an overall complication rate of 20% [511]. A high degree of hydronephrosis, increased number of tracts and operative time [512], and large tract size [510, 513-515] are associated with increased blood loss. Child age [514] and stone burden [510] predispose to the use of larger instruments during PCNL in children. The miniaturisation of equipment increases the opportunity to perform tubeless PCNL in appropriately selected children, which can reduce the length of hospital stay and post-operative pain [516, 517]. A systematic review on the role of mini-PCNL showed an initial and overall SFR of 87.9% and 97% respectively, with no conversions to standard PCNL, and a complication rate of 19%, with a mean transfusion rate of 3.3% [503].

Concerns have been raised regarding the possible adverse effects of PCNL on the renal parenchyma of the developing child. However, focal damage is only reported in 5% of cases [518]. Using pre- and post-PCNL dimercaptosuccinic acid (DMSA) scans, Cicekbilek *et al.* demonstrated that PCNL tracts between 12-24 Charrière in size did not cause significant harm to paediatric kidneys [509].

3.4.15.6 Open and laparoscopic/robot-assisted stone surgery

With the advances in SWL, PCNL and RIRS, very few cases of paediatric urolithiasis require open surgery. Data extracted from the National Inpatient Sample (NIS) databases for 2001-2014 showed that in the USA incisional procedures (mainly nephrolithotomy, pyelolithotomy and ureterotomy) were performed in 2.6% of hospitalised patients (52% aged 15-17 years) who required surgical intervention for urinary stones [519]. Laparoscopy for the management of paediatric renal and ureteric stones is a safe and effective procedure when specific indications are followed. Stone-free rates of 100% were reported when laparoscopic pyelolithotomy was applied for a \geq 1 cm single stone located in an extra-renal pelvis [520], or when laparoscopic ureterolithotomy was applied to impacted ureteric stones \geq 1.5 cm, or to ureteric stones that were refractory to SWL or URS [521]. There are extremely limited data available on the efficacy and complications of robot-assisted laparoscopic management of paediatric urolithiasis [522].

3.4.15.7 Special considerations on recurrence prevention

All paediatric stone formers need metabolic evaluation and recurrence prevention with respect to the detected stone type. Children are in the high-risk group for stone recurrence (See Chapter 4).

Summary of evidence	LE
In children, MET could increase the rate of stone expulsion, reduce the stone expulsion time, and decrease pain episodes/analgesia demand, but it has a higher incidence of side effects.	1b
In children, the indications for SWL, URS and PCNL are similar to those in adults.	1b
Children with renal stones of a diameter up to 20 mm (~300 mm ²) are ideal candidates for SWL.	1b
Ureteroscopy has become the treatment of choice for larger distal ureteral stones in children.	1a
In children, the indications for PCNL are similar to those in adults.	1a
Mini-PCNL is safe and effective in children.	1b

Recommendations	Strength rating
Offer children with single ureteral stones less than 10 mm shock wave lithotripsy (SWL) if localisation is possible or ureteroscopy as first-line option.	Strong
Ureteroscopy is a feasible alternative for ureteral stones not amenable to SWL.	Strong
Offer children with renal stones with a diameter of up to 20 mm (~300 mm ²) SWL.	Strong
Offer children with renal pelvic or calyceal stones with a diameter > 20 mm (~300 mm ²) percutaneous nephrolithotomy.	Strong
Retrograde renal surgery is a feasible alternative for renal stones smaller than 20 mm in all locations.	Weak

3.5 Radiation exposure and protection during endourology

The diagnosis and treatment of nephrolithiasis are associated with high levels of ionising radiation exposure to patients [523, 524]. Currently, there are no studies estimating the lifetime radiation exposure of stone formers or the subsequent risk of malignancy development. The radiation exposure of endourologists has been extensively studied. Still, there are no studies assessing the risk of radiation-induced malignancies in urologists or operating theatre staff members [525-527].

Current evidence from atomic bomb patients [528, 529], retrospective epidemiological data on medical exposure [530, 531], and modelling studies [532, 533] suggest an age and dose-dependent risk of secondary malignancy from ionising radiation.

The International Commission on Radiological Protection (ICRP) recommends a maximum annual occupational exposure of 50mSv [534]. However, the risk of radiation-induced malignancy follows a stochastic model having no known safe threshold of exposure. Taking this into consideration as well as the length of a urologist's career the upper limit of 50mSv is still highly concerning.

Table 3.12 shows the EAU Urolithiasis guidelines panel recommended protection methods to reduce radiation exposure to patients, surgical, anaesthesiologic, and nursing staff.

Table 3.12 Radiation protection measures

Limit studies or intervention involving radiation exposure to those that are strictly medically necessary.

Implement a patient electronic record of medical imaging.

Make use of imaging studies with lower radiation doses (US, KUB, digital tomosynthesis, low-dose and ultralow dose CT scan).

Create and follow a precise radiation exposure protection protocol in your department.

Act in accordance with the as low as reasonably achievable (ALARA) principle.

Measure and report fluoroscopy time to the operative surgeon (use dosimeters and perform monthly calculations).

Technical measures to reduce radiation exposure include:

- · Reducing fluoroscopy time;
- · Limiting time adjacent to patient;
- Using low-dose radiation; Irradiating only to observe motion;
- Intra-operative use of pulsed fluoroscopy;
- Reduced fluoroscopy pulse rate;
- Collimated fields;
- Avoid digital image acquisition and rely on last image hold and instant replay technology.

Use radiation protection instruments (chest, pelvic and thyroid shields, lead or lead-free gloves, protective glasses, lead protection under the operating table between the x-ray source and the surgeon).

The radiation protection instruments must be cared for appropriately as any damage decreases effectiveness and increases exposure risk. They should be monitored and measured regularly to ensure integrity.

Proper surgeon and operating room setup should be observed (follow the inverse square law, use the x-ray source underneath the patient's body, decrease the x-ray source to patient distance, reduce magnification, avoid field overlap by not turning the C-arm in extreme angles, operate in the standing rather than the seated position).

The availability of fluoroscopy is mandatory for endourological procedures. There is an increasing interest in fluoroless and fluoroscopy-free operations in urology. Several RCTs have been published showing a good outcome in means of stone-free and complication rates [166, 270, 535-537]. These trials have been limited to non-complex cases and they were not sufficiently powered to show the non-inferiority of fluoroscopy in PCNL [270, 525] or the superiority of ultrasound in URS [213, 214].

4. METABOLIC EVALUATION AND RECURRENCE PREVENTION

4.1 General metabolic considerations for patient work-up

4.1.1 Evaluation of patient risk

After stone passage, every patient should be assigned to a low- or high-risk group (**Table 3.3**) for stone formation (Figure 4.1).

Reliable stone analysis by infrared spectroscopy or X-ray diffraction and basic metabolic evaluation is mandatory for all stone formers.

Only high-risk stone formers require specific metabolic evaluation. Stone type is the deciding factor for further diagnostic tests. The different stone types include:

- calcium oxalate;
- calcium phosphate;
- uric acid;
- ammonium urate;
- struvite (and infection stones);
- cystine;
- xanthine;
- 2,8-Dihydroxyadenine;
- drug stones;
- stones of unknown composition.

4.1.2 Urine sampling

Specific metabolic evaluation requires the collection of two consecutive 24-hour urine samples [63, 538, 539]. The collecting bottles should be prepared with 1 g thymol per liter or stored at < 8°C during collection to reduce bacterial proliferation [63]. Pre-analytical errors can be minimised by carrying out urinalysis immediately after collection. Alternatively, boric acid (10 g powder per urine container) can also be used, but this prevents the correct determination of pH [63]. The collecting method should be chosen in close cooperation with the laboratory. A pH < 5.5 in a 24-hour urine indicates hyper acidic urine (acidic arrest) [540-542]. In the course of alkalinising therapy for cystinuria and uric acid stones, urine pH should be assessed during the collection of freshly voided urine at different times throughout the day using sensitive pH dipsticks or a pH-meter [23, 63, 543]. A consensus statement stated that RTA is suspected if 24-hour urine pH is > 6.2 and fasting second-morning spot urine pH is > 5.8 [544, 545].

Spot urine samples are an alternative sampling method, particularly when 24-hour urine collection is difficult, for example, in non-toilet-trained children [546]. Spot urine studies normally link the excretion rates to the creatinine [547], but these are of limited use because the results may vary with collection time and patients' sex, body weight, and age.

4.1.3 Timing of specific metabolic work-up

For the initial specific metabolic work-up, the patient should stay on a self-determined diet under normal daily conditions and should ideally be stone-free for at least twenty days [548]. Follow-up studies are necessary for patients taking medication for recurrence prevention [549]. The first follow-up 24-hour urine measurement is suggested eight to twelve weeks after starting pharmacological prevention of stone recurrence. This enables diet and/or drug dosage to be adjusted if urinary risk factors have not normalised, with further 24-hour urine measurements, if necessary. Once urinary parameters have been normalised, it is sufficient to perform a 24-hour urine evaluation every twelve months. On this issue, the Panel realises that there is only very limited published evidence.

4.1.4 **Reference ranges of laboratory values**

Tables 4.1-4.4 provide the internationally accepted reference ranges for the different laboratory values in serum and urine.

Blood parameter	Reference range			
Creatinine	50-100 μmol/L			
Sodium	135-145 mmol/L			
Potassium	3.5-5.5 mmol/L			
Calcium	2.0-2.5 mmol/L (total calcium)			
	1.12-1.32 mmol/L (ionised calcium)			
Uric acid	119-380 µmol/L			
Chloride	98-112 mmol/L			
Phosphate	0.81-1.29 mmol/L			
Blood gas analysis	рН 7.35-7.45			
	pO ₂	80-90 mmHg		
	pCO ₂	35-45 mmHg		
	HCO ₃	22-26 mmol/L		
BE BE ± 2 mmol/L				

Table 4.1: Normal laboratory values for blood parameters in adults [23, 549	Table 4.1: Normal laborator	y values for blood parameter	rs in adults [23, 549
---	-----------------------------	------------------------------	-----------------------

BE = base excess (loss of buffer base to neutralise acid); HCO = bicarbonate; pCO = partial pressure of carbon dioxide; PO = partial pressure of oxygen.

4.1.5 **Risk indices and additional diagnostic tools**

Several risk indices have been developed to describe the crystallisation risk for calcium oxalate or calcium phosphate in the urine [550-553]. However, clinical validation of these risk indices for recurrence prediction or therapy improvement is ongoing.

Table 4.2: Laboratory values for urinary parameters in adults

Urinary Parameters	Reference ranges and limits for medical attention
рН	Consistently fasting morning spot urine pH > 5.8 and > 6.2 in 24-hr collection (suspicious of renal tubular acidosis) [544, 545]
	Consistently > 7.0 (suspicious of infection)
	Consistently < 5.5 in morning urine and in 24-hr collection (suspicious of acidic arrest) [540, 554]
Specific weight	Specific weight > 1.010
Creatinine	7-13 mmol/day (females), 13-18 mmol/day (males)
Calcium	> 5.0 mmol/day (see Fig. 4.2)
	> 8.0 mmol/day (see Fig. 4.2)
Oxalate	> 0.5 mmol/day (suspicious of enteric hyperoxaluria)
	>1.0 mmol/day (suspicious of primary hyperoxaluria)
Uric acid	> 4.0 mmol/day (females), 5 mmol/day (males)
Citrate	< male < 1.7 mmol/day, female < 1.9 mmol/day
Magnesium	< 3.0 mmol/day
Inorganic phosphate	> 35 mmol/day
Ammonium	> 50 mmol/day
Cystine	> 0.8 mmol/day

Table 4.3: Normal values for spot urine samples: creatinine ratios (solute/creatinine) in children [555]

Parameter/Patient age	Ratio of solute to creatinine	Units			
Calcium	mol/mol	mg/mg			
< 12 months	< 2.0	0.81			
1-3 years	< 1.5	0.53			
1-5 years	< 1.1	0.39			
5-7 years	< 0.8	0.28			
> 7 years	< 0.6	0.21			
Oxalate	mol/mol	mg/mg			
0-6 months	< 325-360	288-260			
7-24 months	< 132-174	110-139			
2-5 years	< 98-101	80			
5-14 years	< 70-82	60-65			
> 16 years	< 40	32			
Citrate	mol/mol	g/g			
0-5 years	> 0.25	0.42			
> 5 years	> 0.15	0.25			
Magnesium*	mol/mol	g/g			
	> 0.63	> 0.13			
Uric acid					
> 2 years	< 0.56 mg/dL (33 µmol/L) per GF	< 0.56 mg/dL (33 µmol/L) per GFR (ratio x plasma creatinine)			

* There is low-level evidence regarding the importance of magnesium.

Calcium/24	Citrate/24 hou	ur	Cystine/24 ho	our	Oxalate/24 h	our	Urate/24 hou	ır
All age groups	Boys	Girls	< 10 years	> 10 years	All age groups	< 1 year	1-5 years	> 5 years
< 0.1 mmol/kg/	> 1.9 mmol/	> 1.6 mmol/	< 55 µmol/	< 200 µmol/	< 0.5 mmol/	< 70 µmol/	< 65 mµmol/	< 55 µmol/
24 h	1.73 m2/24 h	1.73 m2/24 h	1.73 m2/24 h	1.73 m2/24 h	1.73 m2/24 h	kg/24 h	kg/24 h	kg/24 h
< 4 mg/kg/24 h	> 365 mg/	> 310 mg/	< 13 mg/	< 48 mg/	< 45 mg /	< 13 mg/	< 11 mg/	< 9.3 mg/
	1.73 m2/24 h	1.73 m2/24 h	1.73 m2/24 h	1.73 m2/24 h	1.73 m2/24 h	kg/24 h	kg/24 h	kg/24 h

Table 4.4: Solute excretion in 24-hour urine samples in children [556, 557]*

*24 h urine parameters are diet and gender-dependent and may vary geographically.

4.2 General considerations for recurrence prevention

All stone formers, independent of their individual risk, should follow the preventive measures in Table 4.5. The main focus is the normalisation of dietary habits and lifestyle risks. Stone formers at high risk need specific prophylaxis for recurrence, which is usually pharmacological treatment based on stone analysis and urinary risk profile.

Fluid intake (drinking advice)	Fluid amount: 2.5-3.0 L/day		
	Water is the preferred fluid		
	Diuresis: 2.0-2.5 L/day		
	Specific weight of urine: < 1,010 g/day		
Nutritional advice for a balanced diet	Balanced diet*		
	Rich in vegetables and fibre		
	Normal calcium content: 1-1.2 g/day		
	Limited NaCl content: 4-5 g/day		
	Limited animal protein content: 0.8-1.0 g/kg/day		
Lifestyle advise to normalise general risk factors	Retain a normal BMI level		
	Adequate physical activity		
	Balancing of excessive fluid loss		
	Reduce the intake of alcohol containing fluids		
	Reduce the intake of sodas and calorie-containing fluids		

Caution: Protein requirements are age dependent; therefore, protein restriction in childhood should be handled carefully.

* Avoid excessive consumption of vitamin supplements.

4.2.1 Fluid intake

An inverse relationship between high fluid intake and stone formation has been repeatedly demonstrated [556-560]. The beneficial effect of fruit juices is mainly determined by the presence of citrate or bicarbonate [561]. Citrus fruit juices seem to protect against stone disease either by increasing urinary citrate levels or by having an alkalinising effect on it [562]. However, if potassium is present, both pH and citrate are increased [563, 564]. One large moderate-quality RCT randomly assigned men with more than one past renal stone of any type and soft drink consumption of at least 160 mL/day to reduced soft drink intake or no treatment. Although the intervention significantly reduced the risk for symptomatic recurrent stones (RR: 0.83; Cl: 0.71-0.98), the level of evidence for this outcome is low because the results were from only one trial [565]. An analysis of 3 Channing's cohorts (194,095 participants) over a median follow-up of more than eight years has shown that consumption of sugar-sweetened soda and punch is associated with a higher risk of stone formation, whereas consumption of coffee, tea, beer, wine, and orange juice is associated with a lower risk [566], whereas consumption of tea and coffee does not seem to increase the risk of stones disease [567]. However, the intake of fluids should be considered within a holistic approach to health. Some of them contain calories or alcohol that may be detrimental to health. Therefore, water should be the preferred fluid.

Diet

A common-sense approach to diet should be taken, that is, a mixed, balanced diet with contributions from all food groups, without any excesses [557, 568, 569]. Sufficient calcium intake is needed especially in vegetarian and vegan diets [570].

Fruit, vegetables and fibre: Fruit and vegetable intake should be encouraged because of the beneficial effects of fiber, although the role of the latter in preventing stone recurrences is debatable [571-574]. The alkaline content of a vegetarian diet also increases urinary pH. In addition, fruits and vegetables have a high-water content and can significantly contribute to fluid intake.

Oxalate: Excessive intake of oxalate-rich products should be limited or avoided to prevent high oxalate load [575], particularly in patients who have high oxalate excretion.

Vitamin C: Although vitamin C is a precursor of oxalate, its role as a risk factor in calcium oxalate stone formation remains controversial [576]. However, it seems wise to advise calcium oxalate stone formers to avoid excessive intake.

Animal protein: Animal protein should not be consumed in excess [577, 578] and limited to 0.8-1.0 g/kg body weight. Excessive consumption of animal protein has several effects that favour stone formation, including hypocitraturia, low urine pH, hyperoxaluria, and hyperuricosuria.

Calcium intake: Calcium should not be restricted, unless there are strong reasons for doing so, due to the inverse relationship between dietary calcium and stone formation [572, 579]. The daily requirement for calcium is 1,000 to 1,200 mg [23]. Calcium supplements are not recommended except in enteric hyperoxaluria when additional calcium should be taken with meals to bind intestinal oxalate [557, 575, 577, 580]. Older adults who do not have a history of renal stones but who take calcium supplements should ensure adequate fluid intake since it may prevent increases in urine calcium concentration, and thereby reduce or eliminate any increased risk of renal stones formation associated with calcium supplement use [581].

Sodium: Daily sodium (NaCl) intake should not exceed 4-5g [23]. High intake adversely affects urine composition:

- Calcium excretion is increased by reduced tubular re-absorption;
- urinary citrate is reduced due to loss of bicarbonate;
- increased risk of sodium urate crystal formation.

Calcium stone formation can be reduced by restricting sodium and animal protein [577, 578]. A positive correlation between sodium consumption and the risk of first-time stone formation has been confirmed only in women [579]. There have been no prospective clinical trials on the role of sodium restriction as an independent variable in reducing the risk of stone formation.

Urate: Intake of purine-rich food should be restricted in patients with hyperuricosuric calcium oxalate [582, 583] and uric acid stones. Intake should not exceed 500 mg/day [23].

4.2.2 Lifestyle

Lifestyle factors may influence the risk of stone formation, for example, those causing obesity [584], diabetes mellitus [585], and metabolic syndrome [586].

4.2.3 Summary of evidence and recommendation for recurrence prevention

Summary of evidence	LE
Increasing water intake reduces the risk of stone recurrence.	1a

Recommendation	Strength rating
Advise patients that a generous intake of fluids, preferably water, is to be maintained,	Strong
allowing for a 24-hour urine volume > 2.5 L.	

4.3 Stone-specific metabolic evaluation and pharmacological recurrence prevention *Introduction*

Pharmacological treatment is necessary in patients at high risk for stone formation or for associated systemic conditions. The ideal drug should halt stone formation, have no side effects, and be easy to administer. Each of these aspects is important to achieve good compliance. Table 4.6 highlights the most important characteristics of commonly used medication.

Agent	Rationale	Dose	Specifics and side effects	Stone type	Ref
Alkaline citrates	Alkalinisation Hypocitraturia Inhibition of calcium oxalate crystallisation	3.25-9.75 g/d (10-30 mmol/d) Children: 0.1-0.15 g/kg/d	Daily dose for alkalinisation depends on urine pH.	Calcium oxalate Uric acid Cystine	[587-592]
Allopurinol	Hyperuricosuria Hyperuricaemia	100-300 mg/d Children: 1-3 mg/kg/d	100 mg in isolated hyperuricosuria. Renal insufficiency demands dose correction. Contraindicated in acute gout pregnancy, and breastfeeding. Allergies from trivial to very severe forms, xanthine stone formation.	Calcium oxalate Uric acid Ammonium urate 2,8-Dihydroxyadenine	[557, 593- 596]
Calcium	Enteric hyperoxaluria	Up to 2,000 mg/d depending on oxalate excretion	Intake 30 min before meals.	Calcium oxalate	[577, 579, 580, 597]
Captopril	Cystinuria Active decrease of urinary cystine levels	75-150 mg	Second-line option in case of significant side effects of tiopronin.	Cystine	[598, 599]
Febuxostat	Hyperuricosuria Hyperuricaemia	80-120 mg/d	Contraindicated in acute gout, pregnancy and breastfeeding. Xanthine stone formation.	Calcium oxalate Uric acid	[600, 601]
L-Methionine	Acidification	600-1,500 mg/d	Hypercalciuria, bone demineralisation, systemic acidosis. No long-term therapy.	Infection stones Ammonium urate Calcium phosphate	[587, 602]
Magnesium	Isolated Hypomagnesuria Enteric hyperoxaluria	200-400 mg/d Children: 6 mg/kg/d	Renal insufficiency demands dose correction. Diarrhoea, chronic alkali losses, hypocitraturia.	Calcium oxalate	[603, 604] (Low level of evidence)
Sodium bicarbonate	Alkalinisation Hypocitraturia	4.5 g/d	Daily dose for alkalinisation depends on urine pH	Calcium oxalate Uric acid, Cystine	[605]

Table 4.6: Pharmacological substances used for stone prevention - characteristics, specifics, and dosage.

Pyridoxine	Primary hyperoxaluria	Initial dose 5 mg/kg/d Max. 20 mg/kg/d	Sensory peripheral neuropathy	Calcium oxalate	[606]
Thiazide (Hydro- chlorothiazide*)	Hypercalciuria	25-50 mg/d Children: 0.5-1 mg/kg/d	Risk for hypotension diabetes, hyperuricaemia, hypokalaemia, hypocitraturia.	Calcium oxalate Calcium phosphate	[583, 587- 596, 598- 616]
Tiopronin	Cystinuria Increase in solubility of levels	Initial dose 800 mg/d Avg. 2,000 mg/d** Children: Initial dose in patients > 20kg is 15 mg/kg/day. Avoid dosages > 50mg/kg/day	Risk for proteinuria.	Cystine	[617-620]

* Patients on hydrochlorothiazide should be advised to get their skin checked on a regular basis as they have a higher risk of developing a non-melanoma skin cancer (NMSC) and some forms of melanoma. In patients with a history of skin cancer, the indication for treatment with hydrochlorothiazide should be thoroughly reviewed [621-623].

** No information is available on maximum dose and patients may be initiated on a very low dose if they have previously had reactions to tiopronin or penicillamine. For all patients, dosage should be titrated according to the frequency of stone episodes, side effects, and renal function under expert supervision with close monitoring.

4.4 Calcium oxalate stones

The criteria for identification of calcium oxalate stone formers with a high risk of recurrences and comorbidities are listed in section 3.1.3.

4.4.1 Diagnosis

Blood analysis requires measurement of creatinine, sodium, potassium, chloride, ionised calcium (or total calcium + albumin), phosphate, uric acid; and, in the case of increased calcium levels, parathyroid hormone (PTH) and vitamin D. Urinalysis requires measurement of urine volume, urine pH, specific weight, calcium, oxalate, uric acid, citrate, sodium, and magnesium. Figure 4.2 summarises the diagnostic steps for calcium oxalate stones.

Figure 4.2 Diagnostic algorithm for Calcium Oxalate stones

4.4.2 Interpretation of results and aetiology

The most common metabolic abnormalities associated with calcium stone formation are hypercalciuria, which affects 30-60% of adult stone formers, and hyperoxaluria (26-67%), followed by hyperuricosuria (15-46%), hypomagnesuria (7-23%), and hypocitraturia (5-29%). However, ranges tend to differ based on ethnicity [624].

- Elevated levels of ionised calcium in serum (or total calcium and albumin) require assessment of intact PTH to confirm or exclude suspected hyperparathyroidism (HPT).
- Consistently low pH (< 5.5) or 24-hour urine pH < 5.5 may promote co-crystallisation of uric acid and calcium oxalate.
- Similarly, increased uric acid excretion (> 4 mmol/day in adults or > 12 mg/kg/day in children) can act as a
 promoter.
- A pH > 6.2 in a 24-hour urine collection may indicate RTA provided UTI has been excluded. An ammonium chloride loading test confirms distal RTA (Section 4.6.5).
- Hypercalciuria may be associated with normocalcemia (idiopathic hypercalciuria, or granulomatous diseases) or hypercalcemia (hyperparathyroidism, granulomatous diseases, vitamin D excess, or malignancy).
- Hypocitraturia (male < 1.7 mmol/d, female < 1.9 mmol/d) may be idiopathic or secondary to metabolic acidosis or hypokalaemia.
- Oxalate excretion > 0.5 mmol/day in adults confirms hyperoxaluria (see Table 4.3 for the values in children).
 - primary hyperoxaluria (oxalate excretion mostly > 1 mmol/day), appears in three genetically determined forms;
 - o secondary hyperoxaluria (oxalate excretion > 0.5 mmol/day, usually < 1 mmol/day), occurs due to intestinal hyperabsorption of oxalate or extreme dietary oxalate intake;
 - o mild hyperoxaluria (oxalate excretion 0.45-0.85 mmol/day), commonly found in idiopathic calcium oxalate stone formers.
- Hypomagnesuria (< 3.0 mmol/day) may be related to poor dietary intake or to reduced intestinal absorption (chronic diarrhoea).

Figure 4.3: Therapeutic algorithm for calcium oxalate stones

- ¹ Be aware of excess calcium excretion.
- ² tid = three times/day (24h).
- ³ No magnesium therapy for patients with renal insufficiency.
- ⁴ There is no evidence that combination therapy (thiazide + citrate) or (thiazide + allopurinol) is superior to thiazide therapy alone [588, 625].
- ⁵ Febuxostat 80 mg/d.
- * Low evidence (see text)
- ** Calciuria is a continuous variable and treatment may be adjusted to clinical need even when below the threshold indicated.
- *** Patients on hydrochlorothiazide should be advised to get their skin checked on a regular basis as they have a higher risk of developing NMSC and some forms of melanoma. In patients with a history of skin cancer, the indication for treatment with hydrochlorothiazide should be thoroughly reviewed [621-623].

4.4.3 Specific treatment

General preventive measures are recommended for fluid intake and diet. Hyperoxaluric stone formers should consume foods with low oxalate content, whereas hyperuricosuric stone formers benefit from daily dietary reduction of purine. Figure 4.3 summarises the pharmacological treatment of calcium oxalate stones [557, 564, 587-590, 593, 594, 596, 600, 603-605, 609-616, 624, 626-629]. There is only low-level evidence for the efficacy of preventing stone recurrence based on pre-treatment stone composition examination and biochemistry measures, or on-treatment biochemistry measures [557]. One RCT concluded that treatment with hydrochlorothiazide (HCTZ) does not differ substantially from placebo in the prevention of stone recurrence of kidney stones in patients at high risk for recurrence [630]. However, the study was not powered to show any difference of HCTZ over placebo [631]. In fact, the study's main objective based on the author's protocol [631], was to investigate the existence of a dose-response relationship, i.e., a linear trend for three different doses of HCTZ (12.5, 25 mg, and 50 mg/day) on stone recurrence, and this was shown. In addition, the hypercalciuria levels in the population enrolled in the study were significantly lower than the threshold the EAU guidelines recommend being administered to patients (Figure 4.3).

4.4.4 Summary of evidence and recommendations for pharmacological treatments for patients with specific abnormalities in urine composition (based on 24-hour urine samples)

Summary of evidence	LE
Alkaline citrates can reduce stone formation.	1a
Thiazides reduces calciuria.	1a
Oxalate restriction is beneficial if hyperoxaluria is present.	2b
Alkaline citrates can reduce stone formation in enteric hyperoxaluria.	4
Calcium supplement can reduce stone formation in enteric hyperoxaluria.	2
A diet reduced in fat and oxalate can be beneficial in reducing stone formation.	3
Alkaline citrates and sodium bicarbonate can be used if hypocitraturia is present.	1b
Allopurinol is first-line treatment of hyperuricosuria.	1a
Febuxostat is second-line treatment of hyperuricosuria.	1b
Avoid excessive intake of animal protein in hyperuricosuria.	
Restricted intake of salt is beneficial if there is high urinary sodium excretion.	1b

Recommendations	Strength rating
Prescribe thiazide or alkaline citrates or both in case of hypercalciuria*.	Strong
Advise oxalate restriction if hyperoxaluria is present.	Weak
Offer alkaline citrates in enteric hyperoxaluria.	Weak
Offer calcium supplement in enteric hyperoxaluria.	Strong
Advise reduced dietary fat and oxalate in enteric hyperoxaluria.	Weak
Prescribe alkaline citrates or sodium bicarbonate in case of hypocitraturia.	Strong
Prescribe allopurinol in case of hyperuricosuria.	Strong
Offer febuxostat as second-line treatment of hyperuricosuria.	Strong
Avoid excessive intake of animal protein in hyperuricosuria.	Strong
Advise restricted intake of salt if there is high urinary sodium excretion.	Strong

* Patients on hydrochlorothiazide should be advised to get their skin checked on a regular basis as they have a higher risk of developing an NMSC and some forms of melanoma. In patients with a history of skin cancer, the indication for treatment with hydrochlorothiazide should be thoroughly reviewed [621-623].

4.5 Calcium phosphate stones [557, 587, 596, 609, 610, 614, 632]

Some calcium phosphate stone formers are at high risk of recurrence. Further information on identifying high-risk patients is provided in section 3.1.3.

Calcium phosphate mainly appears in two completely different minerals: carbonate apatite and brushite. Carbonate apatite crystallisation occurs at a pH > 6.8 and may be associated with infection. Brushite crystallises at an optimum pH of 6.5-6.8 at high urinary concentrations of calcium (> 8 mmol/day) and phosphate (> 35 mmol/day). Its occurrence is not related to UTI. Possible causes of calcium phosphate stones include HPT, RTA, and UTI; each of which requires different therapy.

4.5.1 Diagnosis

Diagnosis requires blood analysis for creatinine, sodium, potassium, chloride, ionised calcium (or total calcium + albumin), phosphate, and PTH (in the case of increased calcium levels). Urinalysis includes measurement of volume, urine pH, specific weight, calcium, phosphate, and citrate.

4.5.2 Interpretation of results and aetiology

General preventive measures are recommended for fluid intake and diet. The diagnostic and therapeutic algorithm for calcium phosphate stones is shown in Figure 4.4.

Figure 4.4: Diagnostic and therapeutic algorithm for calcium phosphate stones

HPT = hyperparathyroidism; RTA = renal tubular acidosis; UTI = urinary tract infection.

* Patients on hydrochlorothiazide should be advised to get their skin checked on a regular basis as they have a higher risk of developing NMSC and some forms of melanoma. In patients with a history of skin cancer, the indication for treatment with hydrochlorothiazide should be thoroughly reviewed [621-623].

4.5.3 Pharmacological therapy [557, 587, 596, 609, 610, 614, 632]

Hyperparathyroidism and RTA are common causes of calcium phosphate stone formation. Most patients with primary HPT require surgery. Renal tubular acidosis can be corrected pharmacologically including with bicarbonate or alkaline citrate therapy. If primary HPT and RTA have been excluded, pharmacotherapy for calcium phosphate calculi depends on the effective reduction of urinary calcium levels using thiazides. For infection-associated calcium phosphate stones, it is important to consider the guidance given for infection stones.

4.5.4 Summary of evidence and recommendation for the management of calcium phosphate Stones

Summary of evidence	LE
Thiazide decreases calciuria.	1a

Recommendation	Strength rating
Prescribe thiazide in case of hypercalciuria > 8 mmol/24 hours.	Strong

4.6 Disorders and diseases related to calcium stones

4.6.1 Hyperparathyroidism [633-636]

Primary HPT is responsible for an estimated 5% of all calcium stone formation. Renal stones occur in approximately 20% of patients with primary HPT. Elevated levels of PTH significantly increase calcium turnover, leading to hypercalcemia, hypercalciuria, and bone disease. Serum calcium may be mildly elevated and serum PTH may be within the upper normal limits, therefore, repeated measurements may be needed; preferably with the patient fasting. Stones of HPT patients may contain both calcium oxalate and calcium phosphate. Nephrocalcinosis and CKD may also occur.

If HPT is suspected, neck exploration should be performed to confirm the diagnosis. If surgery is contraindicated, primary HPT can be treated with cinacalcet.

4.6.2 Granulomatous Diseases [637]

Granulomatous diseases, such as sarcoidosis, may be complicated by hypercalcemia and hypercalciuria secondary to increased calcitriol production. The latter is independent of PTH control, leading to increased calcium absorption in the gastrointestinal tract and suppression of PTH. Treatment focuses on the activity of the granulomatous diseases and may require steroids, hydroxychloroquine, or ketoconazole. Treatment should be reserved for a specialist.

4.6.3 **Primary Hyperoxaluria** [606]

Patients with primary hyperoxaluria (PH) should be referred to a specialised center, as successful management requires an experienced interdisciplinary team. The main therapeutic aim is to reduce endogenous oxalate production, which is increased in patients with PH. In approximately one-third of patients with PH type I, pyridoxine therapy normalises or significantly reduces urinary oxalate excretion. The goal of adequate urine dilution is achieved by adjusting fluid intake to 3.5-4.0 L/day in adults (children 1.5 L/m² body surface area) and following a circadian drinking regimen.

Therapeutic options for preventing calcium oxalate crystallisation include hyper-diuresis, alkaline citrates, magnesium, and Lumasiran, an RNAi agent, a new treatment for reducing the synthesis of oxalate of PH type 1 [638].

Treatment regimens are:

- pyridoxine in PH type I: 5-20 mg/kg/day according to urinary oxalate excretion and patient tolerance;
- alkaline citrate: 3.25-9.75 g/day in adults, 0.1-0.15 mq/kg/day in children;
- magnesium: 200-400 mg/day (no magnesium in the case of renal insufficiency).
- Lumasiran: Subcutaneous injection with dose and timing adjusted according to body weight and duration
 of treatment:
 - Initial Dose: Bodyweight < 10 kg: 6 mg/kg; Bodyweight 10-20 kg: 6 mg/kg; Bodyweight > 20 kg: 3 mg/kg; once per month for three months subcutaneous injection.
 - Maintenance starting one month after initial doses: Bodyweight < 10 kg: 3 mg/kg 1-mal monthly; Bodyweight 10-20 kg: 6 mg/kg every three months, Bodyweight > 20 kg: 3 mg/kg [639]

4.6.3.1 Summary of evidence and recommendation for the management of primary hyperoxaluria

Summary of evidence	LE
Pyridoxine can reduce the urinary oxalate excretion in primary hyperoxaluria type 1.	3
Lumasiran can reduce the urinary oxalate excretion in primary hyperoxaluria type 1.	1b

Recommendation	Strength rating
Prescribe pyridoxine for primary hyperoxaluria type 1.	Strong
Prescribe Lumasiran for primary hyperoxaluria type 1 if not responsive to pyridoxine.	Strong

4.6.4 Enteric hyperoxaluria [575, 580, 640-642]

Enteric hyperoxaluria is a particularly problematic condition in patients with intestinal malabsorption of fat. This abnormality is associated with a high risk of stone formation and is seen after intestinal resection and malabsorptive bariatric surgery, as well as in Crohn's disease and pancreas insufficiency. In addition to hyperoxaluria, these patients usually present with hypocitraturia due to loss of alkali. Urine pH is usually low, as are urinary calcium and urine volume. All these abnormalities contribute to high levels of supersaturation with calcium oxalate, crystalluria, stone formation, and less frequently to nephrocalcinosis and CKD. Specific preventive measures are:

- restricted intake of oxalate-rich foods [575];
- restricted fat intake [575];
- calcium supplementation at mealtimes to enable calcium oxalate complex formation in the intestine [580, 640-642];
- sufficient fluid intake to balance the intestinal loss of water caused by diarrhoea;
- alkaline citrates to raise urinary pH and citrate.

Summary of evidence	LE
Alkaline citrates can be beneficial to replace citrate loss and raise urine pH.	3
Calcium supplements with meals enable calcium oxalate complex formation in the intestine.	2b
Reduction in dietary fat and oxalate can be beneficial in intestinal malabsorption.	3

Recommendations	Strength rating
Prescribe alkaline citrates for enteric hyperoxaluria.	Weak
Advise patients to take calcium supplements with meals.	Strong
Advise patients to follow a diet with a low fat and oxalate content.	Weak

4.6.5 **Renal tubular acidosis** [557, 596, 643, 644]

Renal tubular acidosis is caused by severe impairment of proton (type I) or bicarbonate handling (type II) along the nephron. Kidney stone formation occurs in patients with distal RTA type I. Figure 4.5 outlines the diagnosis of RTA type I. Table 4.7 shows acquired and inherited causes of RTA.

Figure 4.5: Diagnosis of renal tubular acidosis

BGA = blood gas analysis; RTA = renal tubular acidosis.

** An alternative ammonium chloride loading test using 1-day NH4Cl load with 0.05 g/kg body weight might provide similar results and may be better tolerated by the patient [645]. A second alternative in these cases could be the furosemide/fludrocortisone acidification test [646].

Renal tubular acidosis can be acquired or inherited. Reasons for acquired RTA can be chronic obstructive uropathy, recurrent pyelonephritis, acute tubular necrosis, renal transplantation, analgesic nephropathy, sarcoidosis, Sjögren syndrome and other autoimmune diseases, medullary sponge kidney, liver cirrhosis, sickle cell anaemia, idiopathic hypercalciuria, and primary parathyroidism; it may also be drug-induced (e.g., amphotericin B, foscarnet, lithium, zonisamide, and other carbonic anhydrase inhibitors).

Table 4.7: Inherited	causes of renal	tubular acidosis
----------------------	-----------------	------------------

Type - inheritance	Gene/gene product/function	Phenotype
Autosomal dominant	SLC4A1/AE1/Cl-bicarbonate exchanger	Hypercalciuria, hypokalaemia, rickets/osteomalacia
Autosomal recessive with hearing loss	ATP6V1B1/B1 sub-unit of vacuolar H-ATPase/proton secretion	Hypercalciuria, hypokalaemia, rickets/osteomalacia
Autosomal recessive	ATP6V0A4/A4 sub-unit of vacuolar H-ATPase/proton secretion	Hypercalciuria, hypokalaemia, rickets/osteomalacia

Very rarely biallelic causative variants in FOXI1 and WDR72 genes have also been identified. The main therapeutic aim of RTA treatment is restoring a normal acid-base equilibrium. Despite the alkaline pH of urine in RTA, alkalinisation using alkaline citrates or sodium bicarbonate is important for normalising the metabolic changes (intracellular acidosis) responsible for stone formation (Table 4.8) and bone demineralisation. The alkali load reduces tubular re-absorption of citrate, which in turn normalises citrate excretion. Therapeutic success can be monitored by venous blood gas analysis (base excess: ± 2.0 mmol/L) in complete RTA. If

excessive calcium excretion (> 8 mmol/day) persists after re-establishing acid-base equilibrium, thiazides may lower urinary calcium excretion.

Biochemical risk factor	Indication for pharmacological therapy	Medication
Hypercalciuria	Calcium excretion > 8 mmol/day	Hydrochlorothiazide*, - in adults: 25 mg/day initially, up to 50 mg/day - in children: 0.5-1 mg/kg/day Alternatives in adults: Chlorthalidone 25 mg/d Indapamide 2.5 mg/d
Inadequate urine pH	Citrate excretion male < 1.7 mmol/ day, female < 1.9 mmol/day	Alkaline citrate, 3.25-9.75 g/day divided in three doses <i>OR</i> Sodium bicarbonate, 1.5 g, three times daily

Table 4.8: Pharmacological	treatment of renal tubular acidosis
Table 4.0. I narmacological	

* Patients on hydrochlorothiazide should be advised to get their skin checked on a regular basis as they have a higher risk of developing NMSC and some forms of melanoma. In patients with a history of skin cancer, the indication treatment with hydrochlorothiazide should be thoroughly reviewed [621-623].

4.6.5.1 Summary of evidence and recommendations for the management of tubular acidosis

Summary of evidence	LE
Alkaline citrates can be beneficial in distal renal tubular acidosis.	2b
Thiazides are beneficial for hypercalciuria.	1a

Recommendations	Strength rating
Prescribe alkaline citrates for distal renal tubular acidosis.	Strong
Address normalization of bicarbonatremia and citraturia with alkaline citrate	Strong
Prescribe thiazides for hypercalciuria.	Strong

4.6.6 Nephrocalcinosis [647]

Nephrocalcinosis (NC) refers to increased calcium crystal deposition within the renal cortex or medulla and occurs alone or in combination with renal stones. There are various metabolic causes. The main causes are HPT, primary and enteric hyperoxalurias, genetic and acquired RTA, medullary sponge kidney, vitamin D metabolic disorders, sarcoidosis, idiopathic hypercalciuria and hypocitraturia, and genetic disorders, including Dent's disease and Bartter's syndrome. The many causes of NC mean there is no single standard therapy. Therapeutic attention must focus on the underlying metabolic or genetic disease, on the frequent association with CKD while minimising the biochemical risk factors.

4.6.6.1 Diagnosis

Diagnosis requires the following blood analysis: PTH (in the case of increased calcium levels), vitamin D and metabolites, vitamin A, sodium, potassium, magnesium, chloride, and bicarbonate. Urinalysis should investigate urine pH profile at different times of the day daily urine volume, specific weight of urine, and levels of calcium, oxalate, phosphate, uric acid, magnesium, and citrate [545].

4.7 Uric acid and ammonium urate stones

All uric acid and ammonium urate stone formers are considered to be at high risk of recurrence [23]. Uric acid nephrolithiasis is responsible for approximately 10% of renal stones [648] and is associated with hyperuricosuria or low urinary pH. Hyperuricosuria may be a result of dietary excess, endogenous overproduction (enzyme defects), myeloproliferative disorders, chemotherapy drugs, gout or catabolism [542]. Low urinary pH may be caused by decreased urinary ammonium excretion (insulin resistance, gout, Autosomal dominant polycystic kidney disease [ADPKD]), increased endogenous acid production (insulin resistance, metabolic syndrome, or exercise-induced lactic acidosis), increased acid intake (high animal protein intake), or increased base loss (diarrhoea) [542].

Ammonium urate stones are extremely rare, comprising < 1% of all types of urinary stones. They are associated with UTI, malabsorption (inflammatory bowel disease and ileostomy diversion or laxative abuse), phosphate deficiency, hypokalemia, and malnutrition. Suggestions on uric acid and ammonium urate nephrolithiasis are based on level 3 and 4 evidence. Chronic kidney disease is frequently observed.

4.7.1 Diagnosis

Figure 4.6 shows the diagnostic algorithm for uric acid stones and figure 4.7 shows the therapeutic algorithm for uric acid and ammonium urate stones. Blood analysis requires measurement of creatinine and uric acid levels. Urinalysis requires measurement of urine volume, urine pH, specific weight of urine, and uric acid level. Urine culture is needed in the case of ammonium urate stones.

4.7.2 Interpretation of results

Uric acid and ammonium urate stones form under completely different biochemical conditions. Low urine pH promotes uric acid crystallisation.

Hyperuricosuria is defined as uric acid excretion > 4 mmol/day and day and > 5 mmol/day in adult females and males, respectively, or > 0.12 mmol/kg/day in children. Hyperuricaemia may be present, but there is only weak evidence for its association with stone formation [649].

Hyperuricosuric calcium oxalate stone formation can be distinguished from uric acid stone formation by urinary pH, which is usually > 5.5 in calcium oxalate stone formation and < 5.5 in uric acid stone formation and occasional absence of hyperuricosuria in patients with pure uric acid stones [650, 651]. Ammonium urate crystals form in urine at pH > 6.5, high uric acid concentration in urine when ammonium is present [652, 653].

4.7.3 Specific treatment

General preventive measures are recommended for fluid intake and diet. Hyperuricosuric stone formers benefit from purine reduction in their daily diet. Figure 4.6 describes pharmacological treatment [23, 648, 650-660]. For uric acid stones, allopurinol may change the stone composition distribution in patients with gout to a pattern similar to that in stone formers without gout [661].

Figure 4.6: Diagnostic algorithm for uric acid stones

ADPKD = autosomal dominant polycystic kidney disease; G6P = glucose-6 phosphate dehydrogenase; HGPT = hypoxanthine guanine phosphoribosyl transferase; PRPS = phosphoribosyl-pyrophosphate synthetase superactivity; XO = xanthine oxidase.

Figure 4.7: Therapeutic algorithm for uric acid- and ammonium urate stones

¹ d: day.

² tid: three times a day.

³ A higher pH may lead to calcium phosphate stone formation.

⁴ In patients with high uric acid excretion, allopurinol may be helpful.

4.7.4 Summary of evidence and recommendations for the management of uric acid- and ammonium urate stones

Summary of evidence	LE
Alkaline citrates can be beneficial to alkalinise the urine in uric acid stone formers.	3
Allopurinol can be beneficial in hyperuricosuric urate stone formers.	1b

Recommendations	Strength rating
Prescribe alkaline citrates to alkalinise the urine in uric acid stone formers.	Strong
Prescribe allopurinol in hyperuricosuric urate stone formers.	Strong

4.8 Struvite and infection stones

All infection-stone formers are deemed at high risk of recurrence. Struvite stones represent 2-15% of the stones sent for analysis. Stones that contain struvite may originate *de novo* or grow on pre-existing stones, which are infected with urea-splitting bacteria [662]. There are several factors predisposing patients to struvite stone formation (Table 4.9) [663]. Several studies have reported that urinary metabolic alterations can be disclosed in 36-81% of patients with mixed struvite stones [664-669].

4.8.1 Diagnosis

Blood analysis requires measurement of creatinine, and urinalysis requires repeat urine pH measurements and urine culture. In cases of mixed struvite stones, the search for metabolic abnormalities in 24-hour urine after stone removal and infection control is suggested.

4.8.2 Interpretation

Infection stones contain the following minerals: struvite and/or carbonate apatite and/or ammonium urate. Urine culture typically provides evidence for urease-producing bacteria, which increase ammonia ions and develop alkaline urine (Table 4.10). Carbonate apatite starts to crystallise at a urine pH level of 6.8. Struvite only precipitates at pH > 7.2 [670, 671]. A mixed struvite stone, i.e., containing a high percentage of calcium oxalate and carbonate apatite, suggests the over-infection of a "metabolic" calcium oxalate or calcium phosphate stone [669]. Proteus mirabilis accounts for more than half of all urease positive UTIs [672, 673].

4.8.3 Specific treatment

General preventive measures are recommended for fluid intake and diet. Specific measures include complete surgical stone removal [663], short- or long-term antibiotic treatment [674], and urinary acidification using methionine [602] or ammonium chloride [675]. For persistent infections/colonisation, acetohydroxamic acid may be an option [676, 677] (Figure 4.8); however, it is not licensed/available in all European countries.

Eradication of infection after complete stone removal is desirable. The evidence regarding the duration of post-operative antibiotic administration is inconclusive.

Summary of evidence	LE
Removing the stone material as completely as possible with surgery can reduce ongoing infection.	3
Antibiotics are beneficial after complete stone removal.	3
Ammonium chloride, 1 g, two or three times daily, can ensure urinary acidification to prevent recurrent infection.	3
Methionine, 200-500 mg, one to three times daily, can be used as an alternative to ammonium chloride, to ensure urinary acidification.	3
Treatment of underlying metabolic abnormalities reduces recurrence of mixed struvite stones.	3
Urease inhibitors in case of severe infection are occasionally used (if licensed).	1b

Recommendations	Strength rating
Surgically remove the stone material as completely as possible.	Strong
Prescribe antibiotics in case of persistent bacteriuria.	Strong
Prescribe ammonium chloride, 1 g, two or three times daily to ensure urinary acidification.	Weak
Prescribe methionine, 200-500 mg, one to three times daily, as an alternative, to ensure	Weak
urinary acidification.	

Table 4.9: Factors predisposing to struvite stone formation.

•	Neurogenic bladder	•	Urethral stricture
•	Spinal cord injury/paralysis	•	Benign prostatic hyperplasia
•	Continent urinary diversion	•	Bladder diverticulum
•	Ileal conduit	•	Cystocele
•	Foreign body	•	Calyceal diverticulum
•	Stone disease	•	UPJ obstruction
•	Indwelling urinary catheter		

Table 4.10: Most important species of urease-producing bacteria

Obligate urease-producing bacteria (> 98%)

- Proteus spp.
- Providencia rettgeri
- Morganella morganii
- Corynebacterium urealyticum
- Ureaplasma urealyticum

Figure 4.8: Diagnostic and therapeutic algorithm for infection stones.

¹ Discussed with uric acid stones.

² Acetohydroxamic acid.

* When nationally available.

bid = twice a day; tid = three times a day; AHA = acetohydroxamic acid.

4.9 Cystine stones

Cystine stones account for 1-2% of all urinary stones in adults and 6-8% of the stones reported in paediatric studies [678, 679]. All cystine stone formers are deemed at high risk of recurrence and CKD [680, 681].

4.9.1 Diagnosis

Blood analysis includes measurement of creatinine, and urinalysis includes measurement of urine volume, pH profile, specific weight, and cystine. Since the disease may be asymptomatic, siblings of cystinuric patients should be investigated for cystinuria [682].

Interpretation

- Cystine is poorly soluble in urine and crystallises spontaneously within the physiological urinary pH range.
- Cystine solubility depends strongly on urine pH: at pH 6.0, the limit of solubility is 1.33 mmol/L.

- Routine analysis of cystine is not suitable for therapeutic monitoring.
- Regardless of the phenotype or genotype of the cystinuric patient, the clinical manifestations are the same [683].
- There is no role for genotyping patients in the routine management of cystinuria [684, 685].
- Reductive therapy targets the disulphide binding in the cystine molecule. For therapy monitoring, it is
 important to differentiate between cystine, cysteine, and drug-cysteine complexes. However, available
 methods to monitor cystinuria treatment which may be able to differentiate between the different
 complexes formed by therapy are cumbersome [686, 687] non accurate, including high-performance liquid
 chromatography (HPLC) [63].
- Quantitative 24-hour urinary cystine excretion confirms the diagnosis in the absence of stone analysis.
- Levels above 0.125 mmol/day (30 mg/day) are considered abnormal [688, 689].

4.9.2 Specific treatment

General preventative measures for fluid intake and diet are recommended. A diet low in methionine may theoretically reduce urinary excretion of cystine; however, patients are unlikely to comply sufficiently with such a diet. A restricted intake of sodium is more easily achieved and is more effective in reducing urinary cystine. Patients are usually advised to avoid sodium consumption > 2 g/day (5 g NaCl) [690]. A high level of diuresis is of fundamental importance, aiming for a 24-hour urine volume of > 3 L [683, 690-692]. A considerable fluid intake evenly distributed throughout the day is necessary.

4.9.2.1 Pharmacological treatment of cystine stones

The main therapeutic option for avoiding cystine crystallisation is to maintain urine pH > 7.5, to improve cysteine solubility, and ensure appropriate hydration with a minimum of >3 L/day in adults, or 1.5 L/m2 body surface area in children [683, 690-692]. Home monitoring of the urine pH is suggested because of the possibility of self-adjusting alkaline treatment keeping the urine pH within range [63].

Free cystine concentration can be decreased by reductive substances, which act by splitting the disulphide binding of cystine.

Tiopronin is currently the best choice for cystine reduction. However, side effects often lead to treatment termination, for example when nephrotic syndrome develops or when there is poor compliance, especially with long-term use. After carefully considering the risk of early tachyphylaxis, putting into place a dose-escape phenomenon for long-term use, and recurrence risk, tiopronin is recommended at cystine levels > 3.0 mmol/day (720 mg/day) or in the case of recurring stone formation, notwithstanding other preventive measures [683, 690-692]. Spot measurement of urine protein should be performed at baseline and during follow-up.

Figure 4.9: Metabolic management of cystine stones [693]

4.9.3 Summary of evidence and recommendations for the management of cystine stones

Summary of evidence	LE
Increasing fluid intake so that 24-hour urine volume exceeds 3 L is used to dilute the cystine.	3
Alkaline citrates 3-10 mmol two or three times daily can be used to achieve $pH > 7.5$.	3
Tiopronin, 250-2,000 mg/day can be used to reduce stone formation in patients with cysteine excretion, > 3 mmol/day, or when other measures are insufficient.	3

Recommendations	Strength rating	
Therapeutic measures		
Urine dilution	Strong	
Advise patients to increase their fluid intake so that 24-hour urine volume exceeds 3 L.		
Alkalinisation	Strong	
Prescribe potassium citrate 3-10 mmol two or three times daily, to achieve pH > 7.5		
Complex formation with cystine	Strong	
For patients with cystine excretion, > 3 mmol/day, or when other measures are insufficient:		
prescribe in addition to other measures tiopronin, 250-2,000 mg/day.		

4.10 2,8-Dihydroxyandenine stones and xanthine stones

All 2,8-Dihydroxyadenine and xanthine stone formers are at high risk of recurrence. Both stone types are rare. Diagnosis and specific prevention are similar to those for uric acid stones [23].

4.10.1 2,8-Dihydroxyadenine stones

A genetically determined defect of adenine phosphoribosyl transferase causes high urinary excretion of poorly soluble 2,8-Dihydroxyadenine [694]. High-dose allopurinol or febuxostat are important options but should be given with regular monitoring [695].

4.10.2 Xanthine stones

Patients who form xanthine stones usually show decreased levels of serum uric acid. There is no available pharmacological intervention.

4.10.3 Fluid intake and diet

Recommendations for general preventive measures apply. Pharmacological intervention is difficult; therefore, high fluid intake ensures optimal specific weight levels of urine < 1.010 (urine specific gravity). A purine-reduced diet decreases the risk of spontaneous crystallisation in urine.

4.11 Drug-induced stones

Drug stones are induced by pharmacological treatment [587, 696] (Table 4.11). Two types exist:

- stones formed by crystallised compounds of the drug;
- stones formed due to unfavourable changes in urine composition under drug therapy.

Table 4.11: Compounds that cause drug stones.

Active compounds crystallising in urine	Substances impairing urine composition
 Allopurinol/oxypurinol Amoxicillin/ampicillin Ceftriaxone 	AcetazolamideAluminium magnesium hydroxideAscorbic acid
Quinolones Ephedrine Indinavir and other HIV-protease inhibitors	 Calcium Laxatives Losartan
 Indinavir and other HIV-protease inhibitors Magnesium trisilicate Sulphonamides 	 Methoxyflurane Orlistat
• Triamterene	 Vitamin D Topiramate Zonisamide

4.12 Matrix Stones

Pure matrix stones are extremely rare with less than 70 cases described in the literature. They are more prevalent in females. The main risk factors are recurrent UTIs, especially due to *P. mirabilis* or *E. coli*, previous surgery for stone disease, chronic renal failure, and haemodialysis. Complete endourological removal, frequently via the percutaneous approach, is critical. Given the rarity of matrix calculi a specific prophylactic regimen to minimise recurrence cannot be recommended. Eliminating infections and prophylactic use of antibiotics are most commonly proposed [697].

4.13 Unknown stone composition [16]

An accurate medical history is the first step towards identifying risk factors as summarised in sections 3.1.3 and 4.13.1 and Fig. 4.1.

Diagnostic imaging begins with a US examination of both kidneys to establish whether the patient is stone-free. Stone detection by the US should be followed by KUB and unenhanced multislice CT in adults to differentiate between calcium-containing and non-calcium stones.

Blood analysis may demonstrate severe metabolic and organic disorders, such as renal insufficiency, HPT or other hypercalcaemic states and hyperuricaemia. In children with GFR lower than 30 ml/min, oxalaemia should also be checked.

Urinalysis is performed routinely with a dipstick test as described above. A urine culture is required if there are signs of infection. Urine pH < 5.5 in 24-hour urine collection indicates hyper-acidic urine, which could promote uric acid crystallisation. Urine pH > 6.2 in 24-hour urine collection may indicate RTA if UTI is excluded [642, 644].

Microscopy of urinary sediment can help to discover rare stone types because crystals of 2,8-dihydroxyadenine, cystine, and xanthine are pathognomonic for the corresponding disease. In cases in which the presence of cystine is doubtful, a cyanide nitroprusside colorimetric qualitative test can be used to detect the presence of cystine in urine, with a sensitivity of 72% and specificity of 95%. False-positive results are possible in patients with Fanconi's syndrome or homocystinuria or in those taking various drugs, including ampicillin or sulfa-containing medication [698, 699].

Following this programme, the most probable stone type can be assumed, and specific patient

evaluation can follow. Further metabolic investigations will depend on the presence of risk factors (see section 3.1.3) and on the results of previous investigations. However, if any expulsed stone material is available, it should be analysed for diagnostic confirmation or correction.

4.13.1	Recommendations for investigations for the assessment of patients with stones of unknown			
	composition [17, 23, 62, 587]			

Recommendations	Strength rating	
Investigation	Rationale for investigation	
Take a medical history	 Stone history (former stone events, family history) Dietary habits Medication chart 	Strong
Perform diagnostic imaging	 Ultrasound in the case of a suspected stone Un-enhanced helical computed tomography Determination of Hounsfield units provides information about the possible stone composition 	Strong
Perform a blood analysis	 Creatinine Calcium (ionised calcium or total calcium + albumin) Uric acid 	Strong
Perform a urinalysis	 pH measurement Dipstick test: leukocytes, erythrocytes, nitrites Protein, specific weight Urine cultures Microscopy of urinary sediment (morning urine) Cyanide nitroprusside test (cystine exclusion) Further examinations depend on the results of the investigations listed above. 	Strong

5. FOLLOW-UP OF URINARY STONES

There is no consensus in the urological literature on whether, when, how, and how often stone patients should be followed up after definitive treatment (extracorporeal shock wave lithotripsy, ureteroscopy, percutaneous nephrolithotripsy, medical chemoprophylaxis). This is mainly attributed to the high heterogeneity of stone disease among patients and to the lack of comparative studies regarding follow-up versus no follow-up.

The EAU Urolithiasis Guidelines Panel performed a systematic review questioning the benefits and harms of scheduled imaging and metabolic follow-up for patients who underwent definitive treatment for upper urinary tract stone disease [411]. Based on the results a consensus was reached regarding the frequency of the follow-up for stone-free patients (the general population and the high-risk patients), patients with residual fragments \leq 4 mm, and patients with residual fragments > 4 mm (Figures 5.1 and 5.2).

Stone-free patients could be discharged after two years (radiopaque stones) or after three years (radiolucent stones) as 80% of them will remain stone-free thereafter. Increasing the safety margin for remaining stone-free up to 90%, the patients should be followed up to five years. Most stone-free patients in the general population remained stone-free during the first year, while < 40% of patients with metabolic abnormalities not on medication remained stone-free after three years of follow-up. Therefore, a more extensive follow-up is proposed for patients with metabolic abnormalities.

Patients with fragments \leq 4 mm showed a spontaneous expulsion rate of 17.9-46.5% during the first year. At 49 months of follow-up disease progression rate was 9-34%, the intervention rate 17-29%, and the spontaneous passage rate 21-34%.

Patients with residual stone fragments > 4 mm had only 9% of spontaneous expulsion at three years. These patients should be offered further definitive treatment since intervention rates are high (24-100%). For those on follow-up close surveillance is needed.

Insufficient data exist for high-risk patients, but current literature dictates that patients who are adherent to targeted medical treatment seem to experience less stone growth or re-growth of residual fragments and may be discharged after 36-48 months of non-progressive disease on imaging (Figure 5.1).

Proposed imaging consists of plain X-ray KUB and/or US, based on stone characteristics and clinicians' preferences. Computed tomography scan should be reserved for symptomatic disease or pre-operative imaging, to avoid extensive radiation exposure [411].

The information on stone composition can be used to counsel patients to set expectations and help plan the need for follow up and medical stone management [700].

Figure 5.1: Follow-up duration of Urinary stone patients after treatment.

* Not enough data about subgroup analysis of radiolucent and radiopaque stones.

**According to patient preference or symptomatic disease.

***Patients with diagnosed metabolic abnormalities.

****Lifelong follow-up is advised but data are available for up to ten years.

-wollo-Counsel on nonitoring maging vs discharge Imaging 60 Months Imaging **1etaboli** reatment Counsel on discharge Months maging maging Diagnosis nonitori maging 8 Counsel on ٧s. discharge Imaging 36 Months maging imaging ' maging Aetabo nonitor nonitoring Imaging Imaging 24 Months Metabol Treatm Imaging 18 Months × \times Imaging Imaging 12 Months Aetabolid maging maging nonitori maging Imaging 6 Months Metabolic **Freatmen** monitorin maging Imaging High-risk Low-risk population Fragments High-risk Fragments General ≤ 4mm* > 4mm⁺ Residual fragments Stone-free Follow-up after

Figure 5.2: Consensus on follow-up frequency and imaging modality to use after treatment

Stone free = No stone fragments on postoperative imaging (i.e. no stone fragments on CT/KUB/US). High-Risk = Known biochemical abnormality (i.e.: hypercalciuria, hypocitraturia, hyperuricosuria, RTA, or high-risk stone type such as struvite [See table 3.6]).

Imaging = plain film KUB &/or kidney ultrasonography (KUS) based on clinicians' preference and stone characteristics. Consider CT if the patient is symptomatic or if intervention is planned.

* Clinicians may choose the imaging-only pathway in patients with fragments ≤ 2 mm.

a Treatment monitoring for side effects, intolerance, and compliance.

+ Panel recommends reintervention however close follow up may be considered for some patients at high risk for reintervention based on clinicians' preference.

6. BLADDER STONES

6.1 Prevalence, aetiology, and risk factors of bladder stones

Bladder stones constitute only approximately 5% of all urinary tract stones [701] yet are responsible for 8% of urolithiasis-related mortalities in developed nations [702]. The incidence is higher in developing countries [703]. The prevalence of bladder stones is higher in males, with a reported male-to-female ratio between 10:1 and 4:1 [704, 705]. The age distribution is bimodal: incidence peaks at three years in children in developing countries [704, 706], and 60 years in adulthood [705].

The aetiology of bladder stones is typically multi-factorial [705]. Bladder stones can be classified as primary, secondary, or migratory [707].

Primary or endemic bladder stones occur in the absence of other urinary tract pathology, typically seen in children in areas with poor hydration, recurrent diarrhoea, and a diet deficient in animal protein [708].

Secondary bladder stones occur in the presence of other urinary tract abnormalities, which include bladder outlet obstruction (BOO), neurogenic bladder dysfunction, chronic bacteriuria, foreign bodies (including catheters), bladder diverticula, and bladder augmentation or urinary diversion. In adults, BOO is the most common predisposing factor for bladder stone formation and accounts for 45-79% of vesical calculi [705, 709-712].

Migratory bladder stones are those that have passed from the upper urinary tract where they formed and may then serve as a nidus for bladder stone growth. Patients with bladder calculi are more likely to have a history of upper tract stones and risk factors for their formation [713].

A wide range of metabolic urinary abnormalities can pre-dispose to calculi anywhere in the urinary tract, which is covered in more detail in Section 4. Metabolic Evaluation and Recurrence Prevention. There is a paucity of studies on the specific metabolic abnormalities that predispose to bladder stones.

Bladder stones will form in 3-4.7% of men undergoing surgery for benign prostatic obstruction (BPO) [714, 715], 19-39% and 36-67% of motor-incomplete and motor-complete spinal cord injury patients, respectively [716], and 2.2% of patients with long-term catheters [717]. Two research groups have identified that a larger intravesical protrusion of the prostrate is an independent risk factor for bladder stone formation in patients with BPH undergoing TURP [718, 719]. Kim and colleagues additionally found older age and a lower Qmax to be predictive of bladder stones [718].

In men with chronic urinary retention secondary to BPO, the 24-hour urine of 27 men with bladder stones had a higher uric acid supersaturation (2.2 vs. 0.6 mmol/L, p < 0.01), lower magnesium (106 vs. 167 mmol/L, p = 0.01) and lower pH (5.9 vs. 6.4, p = 0.02) than the 21 men without bladder stones [713]. It is therefore likely that patients with these conditions who form bladder stones also have an abnormal urine composition which predisposes them to bladder stone formation.

The metabolic abnormalities which predispose patients to form secondary bladder stones are poorly understood. Stone analysis of 86 men with a BPO-related bladder stone demonstrated that 42% had calciumbased stones (oxalate, phosphate), 33% had magnesium ammonium phosphate, 10% had mixed stones and 14% had urate stones [705]. Similar findings were reported in more recent studies [720-722] and it is therefore likely that multiple metabolic factors predispose patients to secondary bladder stone formation.

Low urine volume (poor hydration) is the most consistently demonstrable abnormality [723-725].

As an outlet obstruction is more often absent in children than in adults, the aetiology is most likely quite different in this population. Twenty-four-hour urine analysis in children with endemic bladder stones is reported in two studies. Of 57 children in Pakistan, 89.5% had hypocitraturia, 49% had a low urine volume, 44% had hyperoxaluria and 42% had hypocalciuria [723]. Of 61 children in India, stone formers had higher urine calcium and uromucoid concentrations than controls [724]. One study from Thailand compared 24-hour urine analyses from children from a rural area with a high prevalence of bladder stones with those from an urban area: rural children had lower urine volumes and, despite equal calcium, oxalate, and uric acid concentrations, crystalluria with uric acid and calcium oxalate crystals was more prevalent in rural children [725].

Table 6.1 Bladder stones classified by aetiology.

Type of bladder stone	Primary	Secondary	Migratory
Cause/Associations	Occur in the absence of other urinary tract pathology, typically in children in areas with poor hydration, recurrent diarrhoea, and a diet deficient in animal protein	BOO (e.g., BPO, urethral stricture) Neurogenic bladder dysfunction Chronic bacteriuria Foreign bodies (including catheters) Bladder diverticula Bladder augmentation Urinary diversion	Form in the upper urinary tract, then passed into the bladder where they may be a nidus for stone growth

BOO = Bladder Outlet Obstruction; BPO = Benign Prostatic Obstruction.

6.2 Presentation

The symptoms are most associated with bladder stones are urinary frequency, haematuria (which is typically terminal) and dysuria or suprapubic pain, which are worst towards the end of micturition. Sudden movement and exercise may exacerbate these symptoms. Detrusor over-activity is found in over two-thirds of adult male patients with vesical calculi and is significantly more common in patients with larger stones (> 4 cm). However, recurrent UTIs may be the only symptom [710, 711].

In children, symptoms may also include pulling of the penis, difficulties in micturition, urinary retention, enuresis, and rectal prolapse (resulting from straining due to bladder spasms). Bladder stones may also be an incidental finding in 10% of cases [708, 726].

6.3 Diagnostic evaluation

6.3.1 **Diagnostic investigations for bladder stones**

Plain X-ray of KUB has a reported sensitivity of 21%-78% for cystoscopically detected bladder stones in adults [710, 727]. Larger (> 2.0 cm) stones are more likely to be radiopaque [727]. However, plain X-ray provides information on radio-opacity which may guide treatment and follow-up (see Section 3.2.3 X-ray characteristics, for further information).

Ultrasound has a reported sensitivity and specificity of 20-83% and 98-100%, respectively for the detection of bladder stones in adults [728, 729]. Computed tomography and cystoscopy have a higher sensitivity for detecting bladder stones than US or X-ray in adults [728, 729]. No study compares cystoscopy and CT for the diagnosis of bladder stones. Cystoscopy has the advantage of detecting other potential causes for a patient's symptoms (e.g., bladder cancer), whilst CT can also assess upper tract urolithiasis (see also section 3.2.3 X-ray characteristics) [730].

There is a paucity of evidence for the investigation of bladder stones, particularly in children [83, 731]. See also Section 3.3 Diagnostic evaluation, for further information on diagnostic imaging for urolithiasis. The principle of ALARA should be applied, especially in children [732].

6.3.2 Diagnosing the cause of bladder stones

The cause of the bladder stone should be considered prior to bladder stone treatment as eliminating the underlying cause will reduce recurrence rates [733]. The following should be performed where possible prior to (or at the time of) bladder stone treatment:

- physical examination of external genitalia, and peripheral nervous system (including digital rectal examination, peri-anal tone, and sensation in men);
- uroflowmetry and post-void residual urine assessment;
- urine dipstick to include pH ± culture;
- metabolic assessment (see also section 3.3.2.3) including: serum (creatinine, (ionised) calcium, uric acid, sodium, potassium, blood cell count);
- urine pH;
- stone analysis: in first-time formers using a valid procedure (X-ray diffraction or infrared spectroscopy).

The following investigations should also be considered for selected patients:

- upper tract imaging (in patients with a history of urolithiasis or loin pain);
- cysto-urethroscopy or urethrogram.

6.4 Disease Management

6.4.1 Conservative treatment and Indications for active stone removal

Migratory bladder stones in adults may typically be left untreated, especially asymptomatic small stones. Rates of spontaneous stone passage are unknown, but data on ureteric stones suggest stones < 1 cm are likely to pass in the absence of BOO, bladder dysfunction, or long-term catheterisation (see section 3.4.9 Specific stone management of ureteral stones).

Primary and secondary bladder stones are usually symptomatic and are unlikely to pass spontaneously: active treatment of such stones is therefore indicated.

6.4.2 Medical management of bladder stones

There is a paucity of evidence on chemolitholysis of bladder stones. However, guidance on the medical management of urinary tract stones in section 3.4.9 Specific stone management of ureteral stones, can be applied to urinary stones in all locations. Uric acid stones can be dissolved by oral urinary alkalinisation when a PH > 6.5 is consistently achieved, typically using alkaline citrate or sodium bicarbonate. Regular monitoring is required during therapy (see section 3.4.4 Chemolysis). Irrigation chemolysis is also possible using a catheter; however, this is time-consuming may cause chemical cystitis and is therefore not commonly employed [734, 735].

6.4.3 Bladder stone interventions

Minimally invasive techniques for the removal of bladder stones have been widely adopted to reduce the risk of complications and shorten hospital stay and convalescence. Bladder stones can be treated with open, laparoscopic, robotic-assisted laparoscopic, endoscopic (transurethral or percutaneous) surgery or ESWL [736].

6.4.3.1 Suprapubic cystolithotomy

Open suprapubic cystolithotomy is very effective but is associated with a need for catheterisation and longer hospital stay in both adults and children compared to all other stone removal modalities [736]. In children, a non-randomised study found that, if the bladder was closed meticulously in two layers, "tubeless" (drain-less and catheter-less) cystolithotomy was associated with a significantly shorter length of hospital stay compared with traditional cystolithotomy, without significant differences regarding late or intra-operative complications provided that children with prior UTI, recurrent stones, or with previous surgery for anorectal malformation (or other relevant surgery) were excluded [737].

6.4.3.2 Transurethral cystolithotripsy

In both adults and children, transurethral cystolithotripsy provides high SFRs and appears to be safe, with a very low risk of unplanned procedures and major post-operative and late complications [736].

6.4.3.2.1 Transurethral cystolithotripsy in adults

In adults, a meta-analysis of four RCTs including 409 patients demonstrated that transurethral cystolithotripsy has a shorter hospital stay and convalescence with less pain, but equivalent SFR and complications compared to percutaneous cystolithotripsy [736]. Transurethral cystolithotripsy with a nephroscope was quicker than percutaneous cystolithotripsy in three RCTs, although transurethral cystolithotripsy with a cystoscope was slower than percutaneous cystolithotripsy [736].

Rates of urethral strictures following transurethral procedures were not robustly reported: studies report rates between 2.9% and 19.6% during a follow up period of 12 – 24 months [720, 736, 738].

One small RCT demonstrated a shorter duration of catheterisation, hospital stay and procedure with transurethral cystolithotripsy than open cystolithotomy with similar SFR [736]. Meta-analysis of five RCTs found significantly shorter procedure duration for transurethral cystolithotripsy using a nephroscope vs. cystoscope with similar SFRs, hospital stay, convalescence, pain, and complications [739]. Two retrospective studies (n=188) reported that using a resectoscope or nephroscope was associated with a shorter procedure duration (p < 0.05) than a cystoscope for transurethral cystolithotripsy [740, 741]. This suggests that transurethral cystolithotripsy is quicker when using a continuous flow instrument.

6.4.3.2.1.1 Lithotripsy modalities used during transurethral cystolithotripsy in adults.

When considering lithotripsy modalities for transurethral cystolithotripsy, the Panel's systematic review found very low-quality evidence from five non-randomised studies (n=385) which found no difference in SFR between modalities (mechanical, laser, pneumatic, ultrasonic, electrohydraulic lithotripsy [EHL] or washout alone) [736]. Unplanned procedures and major postoperative complications were low-rate events and were not significantly different between lithotripsy modalities, although one non-randomised study (NRS) suggested these might be higher with EHL or mechanical lithotripsy than pneumatic or ultrasonic lithotripsy [742]. All outcomes had very low-quality evidence (GRADE) [736]. High-powered lasers seem to reduce lithotripsy time. Laser lithotripsy was faster than pneumatic lithotripsy (MD 16.6 minutes; CI: 23.51-9.69, p < 0.0001) in one NRS (n=62); however, a laser was used with a resectoscope and the pneumatic device with a cystoscope [743]. The same conclusion was stated in a meta-analysis of ten RCTs with high heterogeneity and small sample sizes in some of the included RCTs [744]. Continuous vs. intermittent irrigating instruments may affect the operation time more significantly than the choice of lithotripsy device [736].

6.4.3.2.1.2 Transurethral cystolithotripsy in children

In children, three NRS suggest that transurethral cystolithotripsy has a shorter hospital stay and catheterisation time than open cystolithotomy, but similar stone-free and complication rates [745]. One small quasi-RCT found a shorter procedure time using laser vs. pneumatic lithotripsy for < 1.5 cm bladder stones with no difference in SFR or other outcomes [746]. Another RCT (n=73) found shorter procedure time using pneumatic vs. laser therapy for bladder stones \leq 1.5 cm with similar SFRs and higher (minor) complication rates for pneumatic lithotripsy [747].

6.4.3.3 Percutaneous cystolithotripsy

6.4.3.3.1 Percutaneous cystolithotripsy in adults:

One NRS found a shorter duration of procedure and catheterisation and less blood loss for percutaneous, compared with open surgery in adult male patients with urethral strictures; all patients in both groups were rendered stone-free [722].

Meta-analysis of four RCTs comparing transurethral and percutaneous cystolithotripsy found a shorter hospital stay for transurethral cystolithotripsy over percutaneous surgery. Transurethral cystolithotripsy was quicker when using a nephroscope. There were no significant differences in SFRs, major postoperative complications, or re-treatment [736].

6.4.3.3.2 Percutaneous cystolithotripsy in children:

In children, three NRS suggest that percutaneous cystolithotripsy has a shorter hospital stay and catheterisation time, but a longer procedure duration and more peri-operative complications than open cystolithotripsy; SFRs were similar [726, 736, 745, 748].

A systematic review identified four non-randomised studies comparing percutaneous and transurethral cystolithotripsy and found similar SFRs, but that transurethral surgery offers shorter duration of catheterisation and hospital stay [726, 745] in contrast, a transurethral approach may need a longer operative time and shows a higher post-operative stricture rate [748]. One small NRS found a non-significant increased risk of unplanned procedures (within 30 days of primary procedure) and major postoperative complications for percutaneous operations compared with transurethral procedures; however, age and stone size determined which intervention children underwent and all patients were rendered stone-free [726]. One RCT compared 48 boys < 14 years undergoing transurethral lithotripsy vs. 49 boys undergoing percutaneous lithotripsy with comparable success and complication rates; however, PCCL had a shorter operative time and less need for stone disintegration [749].

6.4.3.4 Extracorporeal shock wave lithotripsy

Extracorporeal SWL is the least invasive therapeutic procedure [736].

6.4.3.4.1 Shock wave lithotripsy in adults

In adults, one RCT compared SWL with transurethral cystolithotripsy in 100 patients with ≤ 2 cm bladder stones presenting with acute urinary retention. Stone-free rate after one SWL session favoured transurethral cystolithotripsy (86% vs. 98%, p = 0.03); however, following up to three sessions of SWL, there was no significant difference in SFR (94% vs. 98%, p = 0.3) [736, 750].

Two NRS compared transurethral cystolithotripsy vs. SWL and found no significant difference in SFR (97.0% vs. 93.9%, p=0.99, 97.7% vs. 89.7% p=0.07) despite larger stones in transurethral cystolithotripsy patients (4.2 vs. 2.5 cm, p=0.014; and 3.6 vs. 2.6 cm [p value not reported]) [751, 752].

Length of hospital stay appeared to favour SWL in all three studies (0 vs. 1 day, 4.8 vs. 0 days, p=0.02, 0.8 vs. 2.4 days, respectively) [750-752]. No significant differences in major post-operative or intra-operative complications were reported in any study [750-752].

One NRS compared SWL vs. open cystolithotomy in just 43 patients. Stone sizes were not comparable (2.5 vs. 7.4 cm, p < 0.001). Stone-free rates were not significantly different (93.9% vs. 100%, p=0.50). Length of stay favored SWL. There was no significant difference in intra-operative or major post-operative complications [751].

6.4.3.4.2 Shock wave lithotripsy in children

One large NRS found lower SFR for SWL than both transurethral cystolithotripsy and open cystolithotomy, despite treating smaller stones with SWL. However, the length of hospital stays favoured SWL over open cystolithotomy, although this appeared to be comparable between SWL and transurethral cystolithotripsy [753].

6.4.3.5 Laparoscopic cystolithotomy

Laparoscopic cystolithotomy has been described in adults and is typically performed in combination with simple prostatectomy using either traditional laparoscopy or with robotic assistance [754, 755]. A SR found no studies comparing laparoscopic surgery with other procedures [736].

6.4.4 Treatment for bladder stones secondary to bladder outlet obstruction in adult men

Bladder stones in men aged over 40 years may be caused by BPO, the management of which should also be considered. Bladder stones were traditionally an indication for a surgical intervention for BPO: a doctrine that has been questioned by studies. One prospective study reports urodynamics (cystometrogram) findings in 46 men aged > 60 years before and after bladder stone treatment [711]. Only 51% of men had BOO while 10% had detrusor under-activity. Eighteen percent of men had a completely normal urodynamic study and 68% had detrusor over-activity. There was no significant difference between pre- and post-bladder stone removal urodynamic findings [711].

One NRS compared 64 men undergoing transurethral cystolithotripsy with either transurethral resection of the prostate (TURP) or medical management for BPO (α-blocker with or without 5-alpha reductase inhibitor). After 28 months of follow-up, no men on medication had had a recurrence, but 34% underwent TURP: a high post-void residual urine volume predicted the need for subsequent TURP [756]. Another observational study of 23 men undergoing cystolithotripsy and commencing medical management for BPO found 22% developed a BPO-related complication, including 17% who had recurrent stones [733]. One RCT comparing cystolithotripsy with concomitant TURP to cystolithotripsy with medical management of bladder outlet obstruction with Tamsulosin and finasteride demonstrated that both groups had a significantly improved QMax, IPSS, and PVR at follow-up, although the TURP group had a longer procedure and catheterisation time [757]. Large prostates and a high PVR (> 190 ml) were predictive of needing a TURP over time in the medical management cohort, although this was based on only a small number of patients.

Large studies support the safety of performing BPO and bladder stone procedures during the same operation with no difference in major complications compared to a BPO procedure alone [758-760]. An observational study on 2,271 patients undergoing TURP found no difference in complications except UTIs, which occurred slightly more frequently in patients with simultaneously treated bladder stones: 0% vs. 0.6%, p=0.044 [758]. An observational study of 321 men undergoing Holmium laser enucleation of the prostate (HoLEP) found a higher rate of early post-operative incontinence (26.8% vs. 12.5%, p=0.03) in men having concomitant transurethral cystolithotripsy, but no difference in long-term continence rates [760]. Another larger multicenter observational study of 963 patients undergoing HoLEP found no significant differences in the frequency of complications in patients with (n=54 [5.6%]) or without concomitant transurethral cystolithotripsy [761].

6.4.5 Special situations

6.4.5.1 Neurogenic bladder and stone formation

A study of 2,825 spinal cord injury patients over eight years found a 3.3% incidence of bladder stones: 2% with CISC, 6.6% with an indwelling urethral catheter, 11% with a suprapubic catheter, and 1.1% in patients voiding using reflex micturition [766]. However, another study of 457 spinal cord injury patients for six months found no difference in bladder stones between urethral and suprapubic catheterisation [765]. Spinal cord injury patients with an indwelling urethral catheter are six times more likely to develop bladder stones than patients with normal micturition [764, 766].

The risk of stone recurrence after complete removal in spinal cord injury patients is 16% per year [765]. An RCT of 78 spinal cord injury patients who perform CISC found a significant reduction in bladder stone formation when twice weekly manual bladder irrigations were performed for six months (49% vs. 0%, p = < 0.0001), as well as less symptomatic UTIs (41% vs. 8%; p = 0.001) [767]. However, this study excluded patients who developed autonomic dysreflexia during bladder irrigations. The irrigation volume used was not reported.

6.4.5.2 Bladder Augmentation

The incidence of vesical calculus formation after bladder augmentation is 2-44% in adults [768-777], and 4-53% in children [777-791]. Following cystoplasty, stones form after 24-31 months in adults [769, 771, 776], and after 25-68 months in children [782, 785, 786, 790, 792-794]. The reported cumulative incidence of bladder stone formation after ten years is 28-36% and after twenty years is 41% [777, 795].

Risk factors for bladder stone formation after augmentation include excess mucus production, incomplete bladder emptying, non-compliance with CIC or bladder irrigations, bacteriuria or urinary tract infections (due to urease-producing bacteria), foreign bodies (including staples, mesh, non-absorbable sutures), drainage by vesico-entero-cystostomy (Mitrofanoff or Monti) [435, 769, 772, 774, 775, 782, 786, 789, 795] and voiding by CISC compared with those voiding spontaneously [773]. Gastric segment augmentation confers a lower risk of bladder stones than ileal or colonic segment cystoplasty [778, 782, 786, 789].

In previous stone formers, the rate of recurrence is 15-44% in adults [769-771, 773, 776], and 19-56% in children [435, 777, 778, 782, 784-787, 789, 794]. The risk of recurrence is greatest during the first two years, at about 12% per patient per year, with the risk decreasing with time [794].

Daily, or three-times-weekly bladder irrigations reduce the incidence of bladder stones following bladder augmentation or continent urinary diversion [435, 772]. A randomised study found that daily bladder irrigation with 240 mL of saline reduced stone recurrences (p< 0.0002, p=0.0152) and symptomatic UTIs (p < 0.0001, p < 0.0001) compared to 60mL or 120mL [772]. The frequency of bladder irrigations required is unclear.

6.4.5.3 Urinary diversion

The incidence of stone formation after urinary diversion with an ileal or colon conduit is 0-3% [796, 797]. The incidence of stone formation is 0-34% in orthotopic ileal neobladders (Hautmann, hemi-Kock, Studer, T-pouch or w-neobladder) [433, 773, 797-805], and 4-6% in orthotopic sigmoid neobladders (Reddy) [802, 806]. The risk of pouch stone formation is 4-43% in adults with an ileocaecal continent cutaneous urinary diversion (Indiana, modified Indiana, Kock, or Mainz I) [425, 773, 796, 797, 805, 807]. The average interval from construction of the urinary diversion to stone detection is 71-99 months [801, 808]. In children, the incidence of neobladder stone formation is 30% after Mainz II diversion (rectosigmoid reservoir) [779], and 27% after Kock ileal reservoir construction [791].

6.4.5.4 Treatment of stones in patients with bladder augmentation or urinary diversion

Stones may be removed by open or endoscopic surgery in patients with bladder augmentation or diversion [784]. However, often access cannot be obtained through a continent vesico-entero-cystostomy without damaging the continence apparatus; hence a percutaneous or open approach is typically preferred [784].

No studies comparing outcomes following procedures for stones in reconstructed or augmented bladders were found. Two observational studies indicate that percutaneous lithotomy can be safely performed with US or CT guidance in patients with reconstructed or augmented bladders [809, 810] and is proposed to offer similar advantages over open surgery to those for percutaneous native bladder surgery. Stone recurrence after successful removal has been reported to be 10-42% [809, 810], but appears to be unrelated to the modality used for stone removal [776, 782, 786, 787, 789, 794].

Figure 6.1 Management of Bladder stones

* Lithotripsy modality at surgeon's discretion (e.g., mechanical, laser, pneumatic, ultrasonic).

† Prefer "tubeless" procedure (without placing a catheter or drain) for children with primary bladder stones and no prior infection, surgery, or bladder dysfunction where open cystolithotomy is indicated.

** Stone analysis should be sent for all first-time stone formers and in patients who develop a recurrence under pharmacological prevention, early recurrence after interventional therapy with complete stone clearance or late recurrence after a prolonged stone-free period (see main Urolithiasis guideline).

 \pm Use an alkaline citrate or sodium bicarbonate with frequent urine pH monitoring and dose titration to achieve a consistent pH > 6.5.

BOO = Bladder Outlet Obstruction, TUCL = Trans-urethral cystolithotripsy, PCCL = Percutaneous cystolithotripsy, SWL = Shock-wave Lithotripsy.

6.5 Bladder stones follow-up

There are no studies examining the merits of differing follow-up modalities or frequencies following conservative, medical, or operative treatment of bladder stones in adults or children. Identification and prevention of the cause of bladder stone formation will be crucial to prevent recurrence (see section 6.3.2 Diagnosing the cause of bladder stones).

In adults, there is a paucity of evidence on dietary modification or medical treatment for the prevention of bladder stone recurrence. Recommendations in the EAU Guideline on Urolithiasis, based on evidence from upper tract stones, constitute the best available recommendations, especially for migratory bladder stones (see Section 4 Metabolic Evaluation and Recurrence Prevention).

Where it is possible to address the cause of secondary bladder stones (e.g., treatment of BPO), it is unclear whether metabolic intervention would offer any significant additional benefit in preventing stone recurrence. However, especially where the secondary cause cannot be addressed (e.g., indwelling catheter, neuropathic bladder, bladder augmentation, or urinary diversion); metabolic interventions are likely to reduce bladder stone recurrence rates.

Regular bladder irrigation reduces the chances of bladder stone recurrence in adults and children with bladder augmentation or continent cutaneous urinary diversion and adults with spinal cord injury who perform CISC (see section 6.4.5 Special Situations) [767, 772, 797].

In children with primary (endemic) bladder stones maintenance of hydration, avoidance of diarrhoea, and a mixed cereal diet with milk and Vitamins A and B supplements, with the addition of eggs, meat, and boiled cows' milk after one year of age are recommended to prevent a recurrence [723].

Finally, there are contradictory reports on a possible association between bladder calculi and the future development of bladder cancer [811-813]. The need for follow-up with regular cystoscopy therefore remains controversial.

Summary of evidence	LE
The incidence of bladder stones peaks at three years in children (endemic/primary stones in developing countries) and 60 years in adults.	2c
In adults, BOO is the most common pre-disposing factor for bladder stone formation.	2c
Of men undergoing surgery for BPO, 3-4.7% form bladder stones.	2b
Primary (endemic) bladder stones typically occur in children in areas with poor hydration, recurrent diarrhoea, and a diet deficient in animal protein. The following measures are proposed to reduce their incidence: maintenance of hydration, avoidance of diarrhoea, and a mixed cereal diet with milk and Vitamins A and B supplements; with the addition of eggs, meat, and boiled cows' milk after one year of age.	5
Endoscopic bladder stone treatments (trans-urethral or percutaneous) are associated with comparable SFRs, but a shorter length of hospital stay, duration of procedure and duration of catheterisation compared to open cystolithotomy in adults.	1a
Stone-free rates are lower in patients treated with SWL than those treated with open or endoscopic procedures in both adults and children.	2a
Transurethral cystolithotripsy is associated with a shorter length of hospital stay, less pain and a shorter convalescence period than percutaneous cystolithotripsy in adults.	1b
Transurethral cystolithotripsy with a nephroscope is quicker than when using a cystoscope with no difference in SFR in adults.	1a
Mechanical, pneumatic and laser appear equivalent lithotripsy modalities for use in endoscopic bladder stone treatments in adults and children.	2a
Open cystolithotomy without a retropubic drain or urethral catheter ("tubeless") is associated with a shorter length of hospital stay than traditional cystolithotomy and can be performed safely in children with primary stones and no prior bladder surgery or infections.	2b
Bladder stone removal with concomitant treatment for BOO is associated with no significant difference in major post-operative complications when compared to BOO treatment alone in adults. However, concomitant bladder stone treatment does increase the rates of short-term post-operative incontinence and UTI.	2b
The incidence of bladder stone formation in spinal cord injury patients is 19-67% over time. The absolute annual risk of stone formation in spinal cord injury patients is significantly higher with an indwelling catheter compared to those voiding with CISC or spontaneously.	2b

6.6 Summary of evidence and recommendations for the treatment of bladder stones

The incidence of bladder stone formation after bladder augmentation or vesico-entero-cystostomy is between 2-53% in adults and children.	2b
The risk of bladder stone formation in spinal cord injury, bladder augmentation or continent urinary diversion patients is reduced by performing regular bladder irrigation.	2b

Recommendations	Strength rating
Use ultrasound (US) as first-line imaging with symptoms suggestive of a bladder stone.	Strong
Use cystoscopy or computed tomography (CT), or kidney-ureter-bladder X-Ray (KUB) to investigate adults with persistent symptoms suggestive of a bladder stone if US is negative.	Strong
 All patients with bladder stones should be examined and investigated for the cause of bladder stone formation, including: uroflowmetry and post-void residual; urine dipstick, pH, ± culture; metabolic assessment and stone analysis (see sections 3.3.2.3 and 4.1 of the Urolithiasis guidelines for further details). In selected patients, consider: upper tract imaging (in patients with a history of urolithiasis or loin pain); cysto-urethroscopy or urethrogram. 	Weak
Offer oral chemolitholysis for radiolucent or known uric acid bladder stones in adults.	Weak
Offer adults with bladder stones transurethral cystolithotripsy where possible.	Strong
Perform transurethral cystolithotripsy with a continuous flow instrument in adults (e.g., nephroscope or resectoscope) where possible.	Weak
Offer adults percutaneous cystolithotripsy where transurethral cystolithotripsy is not possible or advisable.	Strong
Suggest open cystolithotomy as an option for very large bladder stones in adults and children.	Weak
Offer children with bladder stones transurethral cystolithotripsy where possible.	Weak
Offer children percutaneous cystolithotripsy where transurethral cystolithotripsy is not possible or is associated with a high risk of urethral stricture (e.g., young children, previous urethral reconstruction, and spinal cord injury).	Weak
Open, laparoscopic, and extracorporeal shock wave lithotripsy are alternative treatments where endoscopic treatment is not advisable in adults and children.	Weak
Prefer "tubeless" procedure (without placing a catheter or drain) for children with primary bladder stones and no prior infection, surgery, or bladder dysfunction where open cystolithotomy is indicated.	Weak
 Individualise imaging follow up for each patient as there is a paucity of evidence. Factors affecting follow up will include: whether the underlying functional predisposition to stone formation can be treated (e.g., TURP); metabolic risk. 	Weak
Recommend regular irrigation therapy with saline solution to adults and children with bladder augmentation, continent cutaneous urinary reservoir or neuropathic bladder dysfunction, and no history of autonomic dysreflexia, to reduce the risk of stone recurrence.	Weak

7. **REFERENCES**

- Skolarikos, A., *et al.* Metabolic evaluation and recurrence prevention for urinary stone patients: EAU guidelines. Eur Urol, 2015. 67: 750. https://pubmed.ncbi.nlm.nih.gov/25454613
- 2. Turk, C., *et al.* EAU Guidelines on Diagnosis and Conservative Management of Urolithiasis. Eur Urol, 2016. 69: 468.
 - https://pubmed.ncbi.nlm.nih.gov/26318710
- 3. Turk, C., *et al.* EAU Guidelines on Interventional Treatment for Urolithiasis. Eur Urol, 2016. 69: 475. https://pubmed.ncbi.nlm.nih.gov/26344917
- Phillips, B., et al. Oxford Centre for Evidence-based Medicine Levels of Evidence. Updated by Jeremy Howick March 2009. 2009. <u>https://www.cebm.net/2009/06/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/</u>
- 5. Guyatt, G.H., *et al.* Going from evidence to recommendations. BMJ, 2008. 336: 1049. <u>https://pubmed.ncbi.nlm.nih.gov/18467413</u>
- 6. Sorokin, I., *et al.* Epidemiology of stone disease across the world. World J Urol, 2017. 35: 1301. https://pubmed.ncbi.nlm.nih.gov/28213860
- 7. Monga, M., *et al.* Prevalence of Stone Disease and Procedure Trends in the United States. Urology, 2023. 176: 63.
 - https://pubmed.ncbi.nlm.nih.gov/37062518
- Stamatelou, K.K., et al. Time trends in reported prevalence of kidney stones in the United States: 1976-1994. Kidney Int, 2003. 63: 1817. https://pubmed.ncbi.nlm.nih.gov/12675858
- Hesse, A., et al. Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 vs. 2000. Eur Urol, 2003. 44: 709. https://pubmed.ncbi.nlm.nih.gov/14644124
- 10. Zhe, M., *et al.* Nephrolithiasis as a risk factor of chronic kidney disease: a meta-analysis of cohort studies with 4,770,691 participants. Urolithiasis, 2017. 45: 441. https://pubmed.ncbi.nlm.nih.gov/27837248
- 11. Corrales, M., *et al.* Classification of Stones According to Michel Daudon: A Narrative Review. Eur Urol Focus, 2021. 7: 13.
 - https://pubmed.ncbi.nlm.nih.gov/33288482
- 12. Halbritter, J. Genetics of kidney stone disease-Polygenic meets monogenic. Nephrol Ther, 2021. 17S: S88.
 - https://pubmed.ncbi.nlm.nih.gov/33910705
- Leusmann, D.B. Whewellite, weddellite and company: where do all the strange names originate? BJU Int, 2000. 86: 411. https://pubmed.ncbi.nlm.nih.gov/10971263
- Strohmaier, W.L. Course of calcium stone disease without treatment. What can we expect? Eur Urol, 2000. 37: 339.
 - https://pubmed.ncbi.nlm.nih.gov/10720863
- 15. Ferraro, P.M., et al. Risk of recurrence of idiopathic calcium kidney stones: analysis of data from the literature. J Nephrol, 2017. 30: 227. https://pubmed.ncbi.nlm.nih.gov/26969574
- 16. Keoghane, S., *et al.* The natural history of untreated renal tract calculi. BJU Int, 2010. 105: 1627. https://pubmed.ncbi.nlm.nih.gov/20438563
- 17. Straub, M., *et al.* Diagnosis and metaphylaxis of stone disease. Consensus concept of the National Working Committee on Stone Disease for the upcoming German Urolithiasis Guideline. World J Urol, 2005. 23: 309.
 - https://pubmed.ncbi.nlm.nih.gov/16315051
- Pawar, A.S., et al. Incidence and characteristics of kidney stones in patients with horseshoe kidney: A systematic review and meta-analysis. Urol Ann, 2018. 10: 87. https://pubmed.ncbi.nlm.nih.gov/29416282
- 19. Dissayabutra, T., *et al.* Urinary stone risk factors in the descendants of patients with kidney stone disease. Pediatr Nephrol, 2018. 33: 1173. https://pubmed.ncbi.nlm.nih.gov/29594505

- Hu, H., et al. Association between Circulating Vitamin D Level and Urolithiasis: A Systematic Review and Meta-Analysis. Nutrients, 2017. 9. https://pubmed.ncbi.nlm.nih.gov/28335477
- 21. Geraghty, R.M., et al. Worldwide Impact of Warmer Seasons on the Incidence of Renal Colic and Kidney Stone Disease: Evidence from a Systematic Review of Literature. J Endourol, 2017. 31: 729. https://pubmed.ncbi.nlm.nih.gov/28338351
- 22. Guo, Z.L., *et al.* Association between cadmium exposure and urolithiasis risk: A systematic review and meta-analysis. Medicine (Baltimore), 2018. 97: e9460. https://pubmed.ncbi.nlm.nih.gov/29505519
- 23. Hesse, A.T., Tiselius H-G,. Siener R., *et al.* (Eds.), Urinary Stones, Diagnosis, Treatment and Prevention of Recurrence. 3rd edition. 2009, Basel.
- 24. Basiri, A., *et al.* Familial relations and recurrence pattern in nephrolithiasis: new words about old subjects. Urol J, 2010. 7: 81.

- 25. Goldfarb, D.S., *et al.* A twin study of genetic and dietary influences on nephrolithiasis: a report from the Vietnam Era Twin (VET) Registry. Kidney Int, 2005. 67: 1053. https://pubmed.ncbi.nlm.nih.gov/15698445
- Asplin, J.R., *et al.* Hyperoxaluria in kidney stone formers treated with modern bariatric surgery. J Urol, 2007. 177: 565.

https://pubmed.ncbi.nlm.nih.gov/17222634

- 27. Gonzalez, R.D., *et al.* Kidney stone risk following modern bariatric surgery. Curr Urol Rep, 2014. 15: 401.
- https://pubmed.ncbi.nlm.nih.gov/24658828
- 28. Rendina, D., et al. Metabolic syndrome and nephrolithiasis: a systematic review and meta-analysis of the scientific evidence. J Nephrol, 2014. 27: 371.
- https://pubmed.ncbi.nlm.nih.gov/24696310
- 29. Dell'Orto, V.G., et al. Metabolic disturbances and renal stone promotion on treatment with topiramate: a systematic review. Br J Clin Pharmacol, 2014. 77: 958. https://pubmed.ncbi.nlm.nih.gov/24219102
- Mufti, U.B., *et al.* Nephrolithiasis in autosomal dominant polycystic kidney disease. J Endourol, 2010. 24: 1557.

https://pubmed.ncbi.nlm.nih.gov/20818989

31. Chen, Y., *et al.* Current trend and risk factors for kidney stones in persons with spinal cord injury: a longitudinal study. Spinal Cord, 2000. 38: 346.

https://pubmed.ncbi.nlm.nih.gov/10889563

- 32. Hara, A., *et al.* Incidence of nephrolithiasis in relation to environmental exposure to lead and cadmium in a population study. Environ Res, 2016. 145: 1. https://pubmed.ncbi.nlm.nih.gov/26613344
- Gambaro, G., et al. The Risk of Chronic Kidney Disease Associated with Urolithiasis and its Urological Treatments: A Review. J Urol, 2017. 198: 268. <u>https://pubmed.ncbi.nlm.nih.gov/28286070</u>
- 34. Lucato, P, *et al.* Nephrolithiasis, bone mineral density, osteoporosis, and fractures: a systematic review and comparative meta-analysis. Osteoporos Int, 2016. 27: 3155. https://pubmed.ncbi.nlm.nih.gov/27289533
- 35. Kim, S.C., *et al.* Cystine calculi: correlation of CT-visible structure, CT number, and stone morphology with fragmentation by shock wave lithotripsy. Urol Res, 2007. 35: 319. https://pubmed.ncbi.nlm.nih.gov/17965956
- 36. McGrath, T.A., *et al.* Diagnostic accuracy of dual-energy computed tomography (DECT) to differentiate uric acid from non-uric acid calculi: systematic review and meta-analysis. Eur Radiol, 2020. 30: 2791.

https://pubmed.ncbi.nlm.nih.gov/31980881

- 37. Dahm, P., *et al.* A systematic review and meta-analysis of clinical signs, symptoms, and imaging findings in patients with suspected renal colic. J Am Coll Emerg Physicians Open, 2022. 3: e12831. https://pubmed.ncbi.nlm.nih.gov/36474707
- 38. Ray, A.A., *et al.* Limitations to ultrasound in the detection and measurement of urinary tract calculi. Urology, 2010. 76: 295.

https://pubmed.ncbi.nlm.nih.gov/20206970

39. Smith-Bindman, R., et al. Ultrasonography versus computed tomography for suspected nephrolithiasis. N Engl J Med, 2014. 371: 1100. <u>https://pubmed.ncbi.nlm.nih.gov/25229916</u>

40.	Heidenreich, A., et al. Modern approach of diagnosis and management of acute flank pain: review of
	all imaging modalities. Eur Urol, 2002. 41: 351.
	https://pubmed.ncbi.nlm.nih.gov/12074804
41.	Kennish, S.J., et al. Is the KUB radiograph redundant for investigating acute ureteric colic in the non-
	contrast enhanced computed tomography era? Clin Radiol, 2008. 63: 1131.
	https://pubmed.ncbi.nlm.nih.gov/18774360
42.	Worster, A., et al. The accuracy of noncontrast helical computed tomography versus intravenous
	pyelography in the diagnosis of suspected acute urolithiasis: a meta-analysis. Ann Emerg Med, 2002.
	40: 280.
	https://pubmed.ncbi.nlm.nih.gov/12192351
43.	Yamashita, S., et al. Noncontrast Computed Tomography Parameters for Predicting Shock Wave
	Lithotripsy Outcome in Upper Urinary Tract Stone Cases. Biomed Res Int, 2018. 2018: 9253952.
	https://pubmed.ncbi.nlm.nih.gov/30627582
44.	Wu, D.S., et al. Indinavir urolithiasis. Curr Opin Urol, 2000. 10: 557.
	https://pubmed.ncbi.nlm.nih.gov/11148725
45.	Wiesenthal, J.D., et al. Evaluating the importance of mean stone density and skin-to-stone distance in
	predicting successful shock wave lithotripsy of renal and ureteric calculi. Urol Res, 2010. 38: 307.
	https://pubmed.ncbi.nlm.nih.gov/20625891
46.	Kluner, C., et al. Does ultra-low-dose CT with a radiation dose equivalent to that of KUB suffice to
	detect renal and ureteral calculi? J Comput Assist Tomogr, 2006. 30: 44.
	https://pubmed.ncbi.nlm.nih.gov/16365571
47.	Caoili, E.M., et al. Urinary tract abnormalities: initial experience with multi-detector row CT urography.
	Radiology, 2002. 222: 353.
	https://pubmed.ncbi.nlm.nih.gov/11818599
48.	Van Der Molen, A.J., et al. CT urography: definition, indications and techniques. A guideline for clinical
	practice. Eur Radiol, 2008. 18: 4.
	https://pubmed.ncbi.nlm.nih.gov/17973110
49.	Thomson, J.M., et al. Computed tomography versus intravenous urography in diagnosis of acute
	flank pain from urolithiasis: a randomized study comparing imaging costs and radiation dose.
	Australas Radiol, 2001. 45: 291.
	https://pubmed.ncbi.nlm.nih.gov/11531751
50.	Smith-Bindman, R., et al. Computed Tomography Radiation Dose in Patients With Suspected
	Urolithiasis. JAMA Intern Med, 2015. 175: 1413.
	https://pubmed.ncbi.nlm.nih.gov/26121191
51.	Rodger, F., et al. Diagnostic Accuracy of Low and Ultra-Low Dose CT for Identification of Urinary Tract
	Stones: A Systematic Review. Urol Int, 2018. 100: 375.
	https://pubmed.ncbi.nlm.nih.gov/29649823
52.	Saikiran, P. Effectiveness of Low Dose Over Standard dose CT for Detection of Urolithiasis: A
	Systematic Review. Indian Journal of Forensic Medicine & Toxicology, 2020. 14: 4447.
	https://www.semanticscholar.org/paper/Effectiveness-of-Low-Dose-Over-Standard-dose-CT-for-
	Pendem/d37b3f547f159927e477acf069a3e9390f720604
53.	Moore, C.L., et al. Imaging in Suspected Renal Colic: Systematic Review of the Literature and
	Multispecialty Consensus. J Urol, 2019. 202: 475.
	https://pubmed.ncbi.nlm.nih.gov/31412438
54.	Poletti, P.A., et al. Low-dose versus standard-dose CT protocol in patients with clinically suspected
	renal colic. AJR Am J Roentgenol, 2007. 188: 927.
	https://pubmed.ncbi.nlm.nih.gov/17377025
55.	Xiang, H., et al. Systematic review and meta-analysis of the diagnostic accuracy of low-dose
	computed tomography of the kidneys, ureters and bladder for urolithiasis. J Med Imaging Radiat
	Oncol, 2017. 61: 582.
54	https://pubmed.ncbi.nlm.nih.gov/28139077
56.	Mandel, N., <i>et al.</i> Conversion of calcium oxalate to calcium phosphate with recurrent stone episodes.
	J Urol, 2003. 169: 2026.
67	https://pubmed.ncbi.nlm.nih.gov/12771710
57.	Kourambas, J., et al. Role of stone analysis in metabolic evaluation and medical treatment of
	nephrolithiasis. J Endourol, 2001. 15: 181.
58	https://pubmed.ncbi.nlm.nih.gov/11325090 Hesse, A., et al. Quality control in urinary stone analysis: results of 44 ring trials (1980-2001). Clin
58.	Chem Lab Med, 2005. 43: 298.
	https://pubmed.ncbi.nlm.nih.gov/15843235
	<u>mtps//pubmeu.neu.neu.nmt.nm.gov/10040200</u>

- 59. Abdel-Halim, R.E., *et al.* A review of urinary stone analysis techniques. Saudi Med J, 2006. 27: 1462. https://pubmed.ncbi.nlm.nih.gov/17013464
- 60. Gilad, R., et al. Interpreting the results of chemical stone analysis in the era of modern stone analysis techniques. J Nephrol, 2017. 30: 135.

61. Thiruchelvam, N., *et al.* Planning percutaneous nephrolithotomy using multidetector computed tomography urography, multiplanar reconstruction and three-dimensional reformatting. BJU Int, 2005. 95: 1280.

https://pubmed.ncbi.nlm.nih.gov/15892817

- 62. Bonkat, G., *et al.*, EAU Guidelines on Urological Infections, in EAU Guidelines, Edn. published as the 39th EAU Annual Meeting, Paris, E.A.o.U.G. Office, Editor. 2022, European Association of Urology Guidelines Office: Arnhem, The Netherlands.
- 63. Williams, J.C., Jr., et al. Urine and stone analysis for the investigation of the renal stone former: a consensus conference. Urolithiasis, 2021. 49: 1. https://pubmed.ncbi.nlm.nih.gov/33048172
- 64. Somani, B.K., *et al.* Review on diagnosis and management of urolithiasis in pregnancy: an ESUT practical guide for urologists. World J Urol, 2017. 35: 1637. https://pubmed.ncbi.nlm.nih.gov/28424869
- 65. Asrat, T., *et al.* Ultrasonographic detection of ureteral jets in normal pregnancy. Am J Obstet Gynecol, 1998. 178: 1194.

https://pubmed.ncbi.nlm.nih.gov/9662301

66. Swartz, M.A., *et al.* Admission for nephrolithiasis in pregnancy and risk of adverse birth outcomes. Obstet Gynecol, 2007. 109: 1099.

https://pubmed.ncbi.nlm.nih.gov/17470589

- 67. Patel, S.J., *et al.* Imaging the pregnant patient for nonobstetric conditions: algorithms and radiation dose considerations. Radiographics, 2007. 27: 1705. https://pubmed.ncbi.nlm.nih.gov/18025513
- 68. Juan, Y.S., *et al.* Management of symptomatic urolithiasis during pregnancy. Kaohsiung J Med Sci, 2007. 23: 241.

https://pubmed.ncbi.nlm.nih.gov/17525006

- 69. Opinion, C. Committee Opinion No. 723: Guidelines for Diagnostic Imaging During Pregnancy and Lactation: Correction. Obstet Gynecol, 2018. 132: 786. https://pubmed.ncbi.nlm.nih.gov/30134410
- 70. Masselli, G., *et al.* Stone disease in pregnancy: imaging-guided therapy. Insights Imaging, 2014. 5: 691.

https://pubmed.ncbi.nlm.nih.gov/25249333

- 71. (MHRA), M.a.H.p.R.A., Safety Guidelines for Magnetic Resonance Imaging Equipment in Clinical Use, MHRA, Editor. 2015, MHRA.
- 72. committee, T.A.C.o.O.a.G.A.W.s.h.c.p. Committee Opinion No. 723: Guidelines for Diagnostic Imaging During Pregnancy and Lactation. Obstet Gynecol, 2017. 130: e210. https://pubmed.ncbi.nlm.nih.gov/28937575
- 73. Practice, A.I.o.U.i.M., AIUM Practice parameter for the performance of obstetric ultrasound examinations 2013, A.P.P.f.t.P.o.O.U. Examinations, Editor. 2013, AIUM.
- 74. Administration, U.S.F.D. Avoid Fetal "Keepsake" Images, Heartbeat Monitors. 2014. 2018.
- 75. Sharp, C., *et al.*, Diagnostic Medical Exposures: Advice on Exposure to Ionising Radiation during Pregnancy. 1998, Chilton, Didcot, Oxon, OX11 0RQ.
- 76. Kanal, E., *et al.* ACR guidance document for safe MR practices: 2007. AJR Am J Roentgenol, 2007. 188: 1447.

https://pubmed.ncbi.nlm.nih.gov/17515363

77. Roy, C., *et al.* Assessment of painful ureterohydronephrosis during pregnancy by MR urography. Eur Radiol, 1996. 6: 334.

https://pubmed.ncbi.nlm.nih.gov/8798002

- 78. White, W.M., et al. Predictive value of current imaging modalities for the detection of urolithiasis during pregnancy: a multicenter, longitudinal study. J Urol, 2013. 189: 931. <u>https://pubmed.ncbi.nlm.nih.gov/23017526</u>
- 79. Sternberg, K., *et al.* Pediatric stone disease: an evolving experience. J Urol, 2005. 174: 1711. <u>https://pubmed.ncbi.nlm.nih.gov/16148688</u>
- 80. Bernardor, J., *et al.* Pediatric urolithiasis: what can pediatricians expect from radiologists? Pediatr Radiol, 2023. 53: 695.

81.	Authors on behalf of, I., et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organsthreshold doses for tissue reactions in a radiation protection context. Ann ICRP, 2012. 41: 1. https://pubmed.ncbi.nlm.nih.gov/22925378
82.	Protection, I.C.o.R. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP, 2007. 37.
83.	https://www.icrp.org/publication.asp?id=ICRP%20Publication%20103 Passerotti, C., et al. Ultrasound versus computerized tomography for evaluating urolithiasis. J Urol, 2009. 182: 1829.
84.	https://pubmed.ncbi.nlm.nih.gov/19692054 Tasian, G.E., <i>et al.</i> Evaluation and medical management of kidney stones in children. J Urol, 2014. 192: 1329.
85.	<u>https://pubmed.ncbi.nlm.nih.gov/24960469</u> Palmer, L.S. Pediatric urologic imaging. Urol Clin North Am, 2006. 33: 409. <u>https://pubmed.ncbi.nlm.nih.gov/16829274</u>
86.	Darge, K., et al. [Modern ultrasound technologies and their application in pediatric urinary tract imaging]. Radiologe, 2005. 45: 1101.
87.	https://pubmed.ncbi.nlm.nih.gov/16086170 Pepe, P., et al. Functional evaluation of the urinary tract by color-Doppler ultrasonography (CDU) in 100 patients with renal colic. Eur J Radiol, 2005. 53: 131.
88.	https://pubmed.ncbi.nlm.nih.gov/15607864 Morrison, J.C., <i>et al.</i> Use of Ultrasound in Pediatric Renal Stone Diagnosis and Surgery. Curr Urol Rep, 2017. 18: 22.
89.	https://pubmed.ncbi.nlm.nih.gov/28233230 Stratton, K.L., <i>et al.</i> Implications of ionizing radiation in the pediatric urology patient. J Urol, 2010. 183: 2137.
90.	https://pubmed.ncbi.nlm.nih.gov/20399463 Grivas, N., et al. Imaging modalities and treatment of paediatric upper tract urolithiasis: A systematic review and update on behalf of the EAU urolithiasis guidelines panel. J Pediatr Urol, 2020. 16: 612.
91.	https://pubmed.ncbi.nlm.nih.gov/32739360 Niemann, T., <i>et al.</i> Diagnostic performance of low-dose CT for the detection of urolithiasis: a meta- analysis. AJR Am J Roentgenol, 2008. 191: 396.
92.	https://pubmed.ncbi.nlm.nih.gov/18647908 Rob, S., et al. Ultra-low-dose, low-dose, and standard-dose CT of the kidney, ureters, and bladder: is there a difference? Results from a systematic review of the literature. Clin Radiol, 2017. 72: 11.
93.	https://pubmed.ncbi.nlm.nih.gov/27810168 Leppert, A., et al. Impact of magnetic resonance urography on preoperative diagnostic workup in children affected by hydronephrosis: should IVU be replaced? J Pediatr Surg, 2002. 37: 1441.
94.	https://pubmed.ncbi.nlm.nih.gov/12378450 Pathan, S.A., et al. Delivering safe and effective analgesia for management of renal colic in the emergency department: a double-blind, multigroup, randomised controlled trial. Lancet, 2016. 387: 1999.
95.	https://pubmed.ncbi.nlm.nih.gov/26993881 Pathan, S.A., et al. A Systematic Review and Meta-analysis Comparing the Efficacy of Nonsteroidal Anti-inflammatory Drugs, Opioids, and Paracetamol in the Treatment of Acute Renal Colic. Eur Urol, 2018. 73: 583.
96.	https://pubmed.ncbi.nlm.nih.gov/29174580 Forouzanfar, M.M., et al. Comparison of Intravenous Ibuprofen with Intravenous Ketorolac in Renal Colic Pain Management; A Clinical Trial. Anesth Pain Med, 2019. 9: e86963.
97.	https://pubmed.ncbi.nlm.nih.gov/30881914 Gu, H.Y., et al. Increasing Nonsteroidal Anti-inflammatory Drugs and Reducing Opioids or Paracetamol in the Management of Acute Renal Colic: Based on Three-Stage Study Design of Network Meta-Analysis of Randomized Controlled Trials. Front Pharmacol, 2019. 10: 96. https://pubmed.ncbi.nlm.nih.gov/30853910
98.	Schmidt, M., <i>et al.</i> Diclofenac use and cardiovascular risks: series of nationwide cohort studies. BMJ, 2018. 362: k3426.
99.	https://pubmed.ncbi.nlm.nih.gov/30181258 Coxib, et al. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet, 2013. 382: 769. https://pubmed.ncbi.nlm.nih.gov/23726390

- 100. Moussa, M., et al. Intradermal sterile water injection versus diclofenac sodium in acute renal colic pain: A randomized controlled trial. Am J Emerg Med, 2021. 44: 395. https://pubmed.ncbi.nlm.nih.gov/32444296
- 101. Holdgate, A., et al. Nonsteroidal anti-inflammatory drugs (NSAIDs) versus opioids for acute renal colic. Cochrane Database Syst Rev, 2005. 2004: CD004137. https://pubmed.ncbi.nlm.nih.gov/15846699
- 102. Safaie, A., *et al.* Intravenous morphine plus ibuprofen or ketorolac versus intravenous morphine alone in reducing renal colic pain intensity in emergency department: A randomized, double-blind clinical trial. Turk J Emerg Med, 2022. 22: 8.

103. Beltaief, K., *et al.* Acupuncture versus titrated morphine in acute renal colic: a randomized controlled trial. J Pain Res, 2018. 11: 335.

https://pubmed.ncbi.nlm.nih.gov/29483783

104. Kaynar, M., *et al.* Comparison of the efficacy of diclofenac, acupuncture, and acetaminophen in the treatment of renal colic. Am J Emerg Med, 2015. 33: 749.

https://pubmed.ncbi.nlm.nih.gov/25827597

- 105. Holdgate, A., *et al.* Systematic review of the relative efficacy of non-steroidal anti-inflammatory drugs and opioids in the treatment of acute renal colic. BMJ, 2004. 328: 1401. <u>https://pubmed.ncbi.nlm.nih.gov/15178585</u>
- 106. Seitz, C., *et al.* Medical therapy to facilitate the passage of stones: what is the evidence? Eur Urol, 2009. 56: 455.

https://pubmed.ncbi.nlm.nih.gov/19560860

- 107. Lee, A., *et al.* Effects of nonsteroidal anti-inflammatory drugs on postoperative renal function in adults with normal renal function. Cochrane Database Syst Rev, 2007. 2007: CD002765. https://pubmed.ncbi.nlm.nih.gov/17443518
- 108. Hollingsworth, J.M., *et al.* Alpha blockers for treatment of ureteric stones: systematic review and meta-analysis. BMJ, 2016. 355: i6112.

https://pubmed.ncbi.nlm.nih.gov/27908918

109. Guercio, S., *et al.* Randomized prospective trial comparing immediate versus delayed ureteroscopy for patients with ureteral calculi and normal renal function who present to the emergency department. J Endourol, 2011. 25: 1137.

https://pubmed.ncbi.nlm.nih.gov/21682597

- 110. Hinojosa-Gonzalez, D.E., et al. Emergent urinary decompression in acute stone-related urinary obstruction: A systematic review and meta-analysis. Journal of Clinical Urology, 2021. 16: 19. https://journals.sagepub.com/doi/abs/10.1177/20514158211017027?journalCode=urob
- 111. Zul Khairul Azwadi, I., *et al.* Percutaneous nephrostomy versus retrograde ureteral stenting for acute upper obstructive uropathy: a systematic review and meta-analysis. Sci Rep, 2021. 11: 6613. https://pubmed.ncbi.nlm.nih.gov/33758312
- 112. Weltings, S., *et al.* Lessons from Literature: Nephrostomy Versus Double J Ureteral Catheterization in Patients with Obstructive Urolithiasis-Which Method Is Superior? J Endourol, 2019. 33: 777. https://pubmed.ncbi.nlm.nih.gov/31250680
- 113. Wang, C.J., *et al.* Percutaneous nephrostomy versus ureteroscopic management of sepsis associated with ureteral stone impaction: a randomized controlled trial. Urolithiasis, 2016. 44: 415. <u>https://pubmed.ncbi.nlm.nih.gov/26662171</u>
- 114. Bonkat, G., *et al.* Management of Urosepsis in 2018. Eur Urol Focus, 2019. 5: 5. <u>https://pubmed.ncbi.nlm.nih.gov/30448051</u>
- 115. Evans, L., *et al.* Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med, 2021. 47: 1181.
- https://pubmed.ncbi.nlm.nih.gov/34599691116.Pietropaolo, A., et al. Outcomes of Elective Ureteroscopy for Ureteric Stones in Patients with Prior
Urosepsis and Emergency Drainage: Prospective Study over 5 yr from a Tertiary Endourology Centre.
Eur Urol Focus, 2020. 6: 151.

- 117. Dellabella, M., et al. Randomized trial of the efficacy of tamsulosin, nifedipine and phloroglucinol in medical expulsive therapy for distal ureteral calculi. J Urol, 2005. 174: 167. https://pubmed.ncbi.nlm.nih.gov/15947613
- 118. Borghi, L., *et al.* Nifedipine and methylprednisolone in facilitating ureteral stone passage: a randomized, double-blind, placebo-controlled study. J Urol, 1994. 152: 1095. https://pubmed.ncbi.nlm.nih.gov/8072071

119.	Porpiglia, F., et al. Effectiveness of nifedipine and deflazacort in the management of distal ureter stones. Urology, 2000. 56: 579.
120.	https://pubmed.ncbi.nlm.nih.gov/11018608 Dellabella, M., et al. Medical-expulsive therapy for distal ureterolithiasis: randomized prospective
	study on role of corticosteroids used in combination with tamsulosin-simplified treatment regimen and health-related quality of life. Urology, 2005. 66: 712. https://pubmed.ncbi.nlm.nih.gov/16230122
121.	Yilmaz, E., et al. The comparison and efficacy of 3 different alpha1-adrenergic blockers for distal ureteral stones. J Urol, 2005. 173: 2010.
	https://pubmed.ncbi.nlm.nih.gov/15879806
122.	Liu, X.J., et al. Role of silodosin as medical expulsive therapy in ureteral calculi: a meta-analysis of randomized controlled trials. Urolithiasis, 2018. 46: 211. https://pubmed.ncbi.nlm.nih.gov/28365782
123.	Hsu, Y.P., <i>et al.</i> Silodosin versus tamsulosin for medical expulsive treatment of ureteral stones: A systematic review and meta-analysis. PLoS One, 2018. 13: e0203035.
	https://pubmed.ncbi.nlm.nih.gov/30153301
124.	Pickard, R., <i>et al.</i> Medical expulsive therapy in adults with ureteric colic: a multicentre, randomised, placebo-controlled trial. Lancet, 2015. 386: 341. https://pubmed.ncbi.nlm.nih.gov/25998582
125.	Furyk, J.S., et al. Distal Ureteric Stones and Tamsulosin: A Double-Blind, Placebo-Controlled,
125.	Randomized, Multicenter Trial. Ann Emerg Med, 2016. 67: 86. https://pubmed.ncbi.nlm.nih.gov/26194935
126.	Sur, R.L., <i>et al.</i> Silodosin to facilitate passage of ureteral stones: a multi-institutional, randomized, double-blinded, placebo-controlled trial. Eur Urol, 2015. 67: 959.
107	https://pubmed.ncbi.nlm.nih.gov/25465978
127.	Turk, C., et al. Medical Expulsive Therapy for Ureterolithiasis: The EAU Recommendations in 2016. Eur Urol, 2017. 71: 504. https://pubmed.ncbi.nlm.nih.gov/27506951
128.	Ye, Z., et al. Efficacy and Safety of Tamsulosin in Medical Expulsive Therapy for Distal Ureteral Stones
	with Renal Colic: A Multicenter, Randomized, Double-blind, Placebo-controlled Trial. Eur Urol, 2018. 73: 385.
	https://pubmed.ncbi.nlm.nih.gov/29137830
129.	Bai, Y., <i>et al.</i> Tadalafil Facilitates the Distal Ureteral Stone Expulsion: A Meta-Analysis. J Endourol, 2017. 31: 557. https://pubmed.ncbi.nlm.nih.gov/28384011
130.	Porpiglia, F., et al. Corticosteroids and tamsulosin in the medical expulsive therapy for symptomatic
130.	distal ureter stones: single drug or association? Eur Urol, 2006. 50: 339. https://pubmed.ncbi.nlm.nih.gov/16574310
131.	Kachrilas, S., <i>et al.</i> The current role of percutaneous chemolysis in the management of urolithiasis: review and results. Urolithiasis, 2013. 41: 323.
100	https://pubmed.ncbi.nlm.nih.gov/23743991
132.	Ong, A., <i>et al.</i> Selection and Outcomes for Dissolution Therapy in Uric Acid Stones: A Systematic Review of Literature. Curr Urol Rep, 2023. 24: 355. https://pubmed.ncbi.nlm.nih.gov/37079196
133.	El-Gamal, O., et al. Role of combined use of potassium citrate and tamsulosin in the management of uric acid distal ureteral calculi. Urol Res, 2012. 40: 219.
	https://pubmed.ncbi.nlm.nih.gov/21858663
134.	Elbaset, M.A., et al. Optimal non-invasive treatment of 1-2.5 cm radiolucent renal stones: oral
	dissolution therapy, shock wave lithotripsy or combined treatment-a randomized controlled trial. World J Urol, 2020. 38: 207. https://pubmed.ncbi.nlm.nih.gov/30944968
135.	Musa, A.A. Use of double-J stents prior to extracorporeal shock wave lithotripsy is not beneficial:
100.	results of a prospective randomized study. Int Urol Nephrol, 2008. 40: 19. https://pubmed.ncbi.nlm.nih.gov/17394095
136.	Shen, P., et al. Use of ureteral stent in extracorporeal shock wave lithotripsy for upper urinary calculi: a
	systematic review and meta-analysis. J Urol, 2011. 186: 1328.
	https://pubmed.ncbi.nlm.nih.gov/21855945
137.	Wang, H., et al. Meta-Analysis of Stenting versus Non-Stenting for the Treatment of Ureteral Stones.
	PLoS One, 2017. 12: e0167670.
	https://pubmed.ncbi.nlm.nih.gov/28068364

138. Ghoneim, I.A., et al. Extracorporeal shock wave lithotripsy in impacted upper ureteral stones: a prospective randomized comparison between stented and non-stented techniques. Urology, 2010. 75: 45. https://pubmed.ncbi.nlm.nih.gov/19811806 139. Platonov, M.A., et al. Pacemakers, implantable cardioverter/defibrillators, and extracorporeal shockwave lithotripsy: evidence-based guidelines for the modern era. J Endourol, 2008. 22: 243. https://pubmed.ncbi.nlm.nih.gov/18294028 Li, W.M., et al. Clinical predictors of stone fragmentation using slow-rate shock wave lithotripsy. Urol 140. Int, 2007. 79: 124. https://pubmed.ncbi.nlm.nih.gov/17851280 141. Yilmaz, E., et al. Optimal frequency in extracorporeal shock wave lithotripsy: prospective randomized study. Urology, 2005. 66: 1160. https://pubmed.ncbi.nlm.nih.gov/16360432 142. Pace, K.T., et al. Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. J Urol. 2005. 174: 595. https://pubmed.ncbi.nlm.nih.gov/16006908 Madbouly, K., et al. Slow versus fast shock wave lithotripsy rate for urolithiasis: a prospective 143. randomized study. J Urol, 2005. 173: 127. https://pubmed.ncbi.nlm.nih.gov/15592053 144. Semins, M.J., et al. The effect of shock wave rate on the outcome of shock wave lithotripsy: a metaanalysis. J Urol, 2008. 179: 194. https://pubmed.ncbi.nlm.nih.gov/18001796 145. Li, K., et al. Optimal frequency of shock wave lithotripsy in urolithiasis treatment: a systematic review and meta-analysis of randomized controlled trials. J Urol, 2013. 190: 1260. https://pubmed.ncbi.nlm.nih.gov/23538240 146. Nguyen, D.P., et al. Optimization of Extracorporeal Shock Wave Lithotripsy Delivery Rates Achieves Excellent Outcomes for Ureteral Stones: Results of a Prospective Randomized Trial. J Urol, 2015. 194:418. https://pubmed.ncbi.nlm.nih.gov/25661296 147. Pishchalnikov, Y.A., et al. Why stones break better at slow shockwave rates than at fast rates: in vitro study with a research electrohydraulic lithotripter. J Endourol, 2006. 20: 537. https://pubmed.ncbi.nlm.nih.gov/16903810 148. Kang, D.H., et al. Comparison of High, Intermediate, and Low Frequency Shock Wave Lithotripsy for Urinary Tract Stone Disease: Systematic Review and Network Meta-Analysis. PLoS One, 2016. 11: e0158661. https://pubmed.ncbi.nlm.nih.gov/27387279 149. Al-Dessoukey, A.A., et al. Ultraslow full-power shock wave lithotripsy versus slow power-ramping shock wave lithotripsy in stones with high attenuation value: A randomized comparative study. Int J Urol, 2020. 27: 165. https://pubmed.ncbi.nlm.nih.gov/31793084 150. Connors, B.A., et al. Extracorporeal shock wave lithotripsy at 60 shock waves/min reduces renal injury in a porcine model. BJU Int, 2009. 104: 1004. https://pubmed.ncbi.nlm.nih.gov/19338532 151. Moon, K.B., et al. Optimal shock wave rate for shock wave lithotripsy in urolithiasis treatment: a prospective randomized study. Korean J Urol, 2012. 53: 790. https://pubmed.ncbi.nlm.nih.gov/23185672 152. Ng, C.F., et al. A prospective, randomized study of the clinical effects of shock wave delivery for unilateral kidney stones: 60 versus 120 shocks per minute. J Urol, 2012. 188: 837. https://pubmed.ncbi.nlm.nih.gov/22819406 153. Al-Dessoukey, A.A., et al. Ultraslow full-power shock wave lithotripsy protocol in the management of high attenuation value upper ureteric stones: A randomized comparative study. Int J Urol, 2021. 28: 33. https://pubmed.ncbi.nlm.nih.gov/32985780 154. Lopez-Acon, J.D., et al. Analysis of the Efficacy and Safety of Increasing the Energy Dose Applied Per Session by Increasing the Number of Shock Waves in Extracorporeal Lithotripsy: A Prospective and Comparative Study. J Endourol, 2017. 31: 1289. https://pubmed.ncbi.nlm.nih.gov/29048206 155. Connors, B.A., et al. Effect of initial shock wave voltage on shock wave lithotripsy-induced lesion size during step-wise voltage ramping. BJU Int, 2009. 103: 104. https://pubmed.ncbi.nlm.nih.gov/18680494

156.	Handa, R.K., et al. Optimising an escalating shockwave amplitude treatment strategy to protect the
	kidney from injury during shockwave lithotripsy. BJU Int, 2012. 110: E1041.
	https://pubmed.ncbi.nlm.nih.gov/22612388

157. Skuginna, V., et al. Does Stepwise Voltage Ramping Protect the Kidney from Injury During Extracorporeal Shockwave Lithotripsy? Results of a Prospective Randomized Trial. Eur Urol, 2016. 69: 267.

- 158. Maloney, M.E., et al. Progressive increase of lithotripter output produces better in-vivo stone comminution. J Endourol, 2006. 20: 603. https://pubmed.ncbi.nlm.nih.gov/16999607
- 159. Demirci, D., *et al.* Comparison of conventional and step-wise shockwave lithotripsy in management of urinary calculi. J Endourol, 2007. 21: 1407.
- https://pubmed.ncbi.nlm.nih.gov/18044996
 Honey, R.J., et al. Shock wave lithotripsy: a randomized, double-blind trial to compare immediate versus delayed voltage escalation. Urology, 2010. 75: 38. https://pubmed.ncbi.nlm.nih.gov/19896176
- 161. Ng, C.F., et al. Effect of Stepwise Voltage Escalation on Treatment Outcomes following Extracorporeal Shock Wave Lithotripsy of Renal Calculi: A Prospective Randomized Study. J Urol, 2019. 202: 986.
 - https://pubmed.ncbi.nlm.nih.gov/31112104
- 162. Abdelbary, A.M., *et al.* Value of early second session shock wave lithotripsy in treatment of upper ureteric stones compared to laser ureteroscopy. World J Urol, 2021. 39: 3089. https://pubmed.ncbi.nlm.nih.gov/33471164
- 163. Pishchalnikov, Y.A., *et al.* Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shock wave energy. J Urol, 2006. 176: 2706. https://pubmed.ncbi.nlm.nih.gov/17085200
- Tailly, G.G., *et al.* Optical coupling control: an important step toward better shockwave lithotripsy. J Endourol, 2014. 28: 1368.
 - https://pubmed.ncbi.nlm.nih.gov/24978424
- 165. Jain, A., *et al.* Effect of air bubbles in the coupling medium on efficacy of extracorporeal shock wave lithotripsy. Eur Urol, 2007. 51: 1680.
- https://pubmed.ncbi.nlm.nih.gov/17112655
 Van Besien, J., et al. Ultrasonography Is Not Inferior to Fluoroscopy to Guide Extracorporeal Shock Waves during Treatment of Renal and Upper Ureteric Calculi: A Randomized Prospective Study. Biomed Res Int, 2017. 2017: 7802672.
 - https://pubmed.ncbi.nlm.nih.gov/28589147
- 167. Eichel, L., et al. Operator experience and adequate anesthesia improve treatment outcome with thirdgeneration lithotripters. J Endourol, 2001. 15: 671. https://pubmed.ncbi.nlm.nih.gov/11697394
- 168. Sorensen, C., *et al.* Comparison of intravenous sedation versus general anesthesia on the efficacy of the Doli 50 lithotriptor. J Urol, 2002. 168: 35.
- https://pubmed.ncbi.nlm.nih.gov/12050487

 169.
 Cleveland, R.O., et al. Effect of stone motion on in vitro comminution efficiency of Storz Modulith SLX. J Endourol, 2004. 18: 629.
 - https://pubmed.ncbi.nlm.nih.gov/15597649
- 170. Aboumarzouk, O.M., *et al.* Analgesia for patients undergoing shockwave lithotripsy for urinary stones - a systematic review and meta-analysis. Int Braz J Urol, 2017. 43: 394. <u>https://pubmed.ncbi.nlm.nih.gov/28338301</u>
- Honey, R.J., et al. A prospective study examining the incidence of bacteriuria and urinary tract infection after shock wave lithotripsy with targeted antibiotic prophylaxis. J Urol, 2013. 189: 2112. https://pubmed.ncbi.nlm.nih.gov/23276509
- 172. Lu, Y., et al. Antibiotic prophylaxis for shock wave lithotripsy in patients with sterile urine before treatment may be unnecessary: a systematic review and meta-analysis. J Urol, 2012. 188: 441. https://pubmed.ncbi.nlm.nih.gov/22704118
- 173. Oestreich, M.C., *et al.* Alpha-blockers after shock wave lithotripsy for renal or ureteral stones in adults. Cochrane Database Syst Rev, 2020. 11: CD013393. https://pubmed.ncbi.nlm.nih.gov/33179245
- 174. Yuan, C., et al. Efficacy and Safety of External Physical Vibration Lithecbole After Extracorporeal Shock Wave Lithotripsy or Retrograde Intrarenal Surgery for Urinary Stone: A Systematic Review and Meta-analysis. J Endourol, 2021. 35: 712. https://pubmed.ncbi.nlm.nih.gov/32972194

- 175. Tzelves, L., *et al.* Shockwave Lithotripsy Complications According to Modified Clavien-Dindo Grading System. A Systematic Review and Meta-regression Analysis in a Sample of 115 Randomized Controlled Trials. Eur Urol Focus, 2022. 8: 1452. https://pubmed.ncbi.nlm.nih.gov/34848163
 176. Preminger, G.M., *et al.* 2007 Guideline for the management of ureteral calculi. Eur Urol, 2007. 52: 1610. https://pubmed.ncbi.nlm.nih.gov/18074433
 177. Lingeman, J.E., *et al.* Blood pressure changes following extracorporeal shock wave lithotripsy and other forms of treatment for nephrolithiasis. JAMA, 1990. 263: 1789. https://pubmed.ncbi.nlm.nih.gov/2313851
- Krambeck, A.E., et al. Diabetes mellitus and hypertension associated with shock wave lithotripsy of renal and proximal ureteral stones at 19 years of followup. J Urol, 2006. 175: 1742. https://pubmed.ncbi.nlm.nih.gov/16600747
- 179. Eassa, W.A., *et al.* Prospective study of the long-term effects of shock wave lithotripsy on renal function and blood pressure. J Urol, 2008. 179: 964.

- 180. Yu, C., et al. A systematic review and meta-analysis of new onset hypertension after extracorporeal shock wave lithotripsy. Int Urol Nephrol, 2014. 46: 719. https://pubmed.ncbi.nlm.nih.gov/24162890
- 181. Fankhauser, C.D., et al. Long-term Adverse Effects of Extracorporeal Shock-wave Lithotripsy for Nephrolithiasis and Ureterolithiasis: A Systematic Review. Urology, 2015. 85: 991. <u>https://pubmed.ncbi.nlm.nih.gov/25917723</u>
- 182. Fankhauser, C.D., *et al.* Prevalence of hypertension and diabetes after exposure to extracorporeal shock-wave lithotripsy in patients with renal calculi: a retrospective non-randomized data analysis. Int Urol Nephrol, 2018. 50: 1227.

https://pubmed.ncbi.nlm.nih.gov/29785660

- 183. Ather, M.H., et al. Does ureteral stenting prior to shock wave lithotripsy influence the need for intervention in steinstrasse and related complications? Urol Int, 2009. 83: 222. https://pubmed.ncbi.nlm.nih.gov/19752621
- 184. Madbouly, K., *et al.* Risk factors for the formation of a steinstrasse after extracorporeal shock wave lithotripsy: a statistical model. J Urol, 2002. 167: 1239.

https://pubmed.ncbi.nlm.nih.gov/11832705

185. Sayed, M.A., *et al.* Steinstrasse after extracorporeal shockwave lithotripsy: aetiology, prevention and management. BJU Int, 2001. 88: 675.

https://pubmed.ncbi.nlm.nih.gov/11890235

- 186. Skolarikos, A., *et al.* Extracorporeal shock wave lithotripsy 25 years later: complications and their prevention. Eur Urol, 2006. 50: 981.
 - https://pubmed.ncbi.nlm.nih.gov/16481097
- 187. Osman, M.M., et al. 5-year-follow-up of patients with clinically insignificant residual fragments after extracorporeal shockwave lithotripsy. Eur Urol, 2005. 47: 860. <u>https://pubmed.ncbi.nlm.nih.gov/15925084</u>
- 188. Tan, Y.M., *et al.* Clinical experience and results of ESWL treatment for 3,093 urinary calculi with the Storz Modulith SL 20 lithotripter at the Singapore general hospital. Scand J Urol Nephrol, 2002. 36: 363.

https://pubmed.ncbi.nlm.nih.gov/12487741

189. Muller-Mattheis, V.G., *et al.* Bacteremia during extracorporeal shock wave lithotripsy of renal calculi. J Urol, 1991. 146: 733.

https://pubmed.ncbi.nlm.nih.gov/1875482

- 190. Maker, V., *et al.* Gastrointestinal injury secondary to extracorporeal shock wave lithotripsy: a review of the literature since its inception. J Am Coll Surg, 2004. 198: 128. https://pubmed.ncbi.nlm.nih.gov/14698320
- 191. Chen, C.S., *et al.* Subcapsular hematoma of spleen--a complication following extracorporeal shock wave lithotripsy for ureteral calculus. Changgeng Yi Xue Za Zhi, 1992. 15: 215.
- https://pubmed.ncbi.nlm.nih.gov/1295657
- 192. Kim, T.B., *et al.* Life-threatening complication after extracorporeal shock wave lithotripsy for a renal stone: a hepatic subcapsular hematoma. Korean J Urol, 2010. 51: 212. https://pubmed.ncbi.nlm.nih.gov/20414400
- 193. Ng, C.F., *et al.* Hepatic haematoma after shockwave lithotripsy for renal stones. Urol Res, 2012. 40: 785.

- 194. Wendt-Nordahl, G., et al. Do new generation flexible ureterorenoscopes offer a higher treatment success than their predecessors? Urol Res, 2011. 39: 185. https://pubmed.ncbi.nlm.nih.gov/21052986
- 195. Wang, Q., *et al.* Rigid ureteroscopic lithotripsy versus percutaneous nephrolithotomy for large proximal ureteral stones: A meta-analysis. PLoS One, 2017. 12: e0171478. https://pubmed.ncbi.nlm.nih.gov/28182718
- 196. Wang, Y., *et al.* Comparison of the efficacy and safety of URSL, RPLU, and MPCNL for treatment of large upper impacted ureteral stones: a randomized controlled trial. BMC Urol, 2017. 17: 50. https://pubmed.ncbi.nlm.nih.gov/28662708
- 197. Deng, T., et al. Systematic review and cumulative analysis of the managements for proximal impacted ureteral stones. World J Urol, 2019. 37: 1687. <u>https://pubmed.ncbi.nlm.nih.gov/30430253</u>
- Aboumarzouk, O.M., et al. Flexible ureteroscopy and laser lithotripsy for stones >2 cm: a systematic review and meta-analysis. J Endourol, 2012. 26: 1257. https://pubmed.ncbi.nlm.nih.gov/22642568
- 199. Geraghty, R., et al. Evidence for Ureterorenoscopy and Laser Fragmentation (URSL) for Large Renal Stones in the Modern Era. Curr Urol Rep, 2015. 16: 54. https://pubmed.ncbi.nlm.nih.gov/26077357
- 200. Binbay, M., *et al.* Is there a difference in outcomes between digital and fiberoptic flexible ureterorenoscopy procedures? J Endourol, 2010. 24: 1929. https://pubmed.ncbi.nlm.nih.gov/21043835
- 201. Yaghoubian, A.J., *et al.* Displacement of Lower Pole Stones During Retrograde Intrarenal Surgery Improves Stone-free Status: A Prospective Randomized Controlled Trial. J Urol, 2023. 209: 963. <u>https://pubmed.ncbi.nlm.nih.gov/36753676</u>
- 202. Luo, Z., et al. Comparison of retrograde intrarenal surgery under regional versus general anaesthesia: A systematic review and meta-analysis. Int J Surg, 2020. 82: 36. https://pubmed.ncbi.nlm.nih.gov/32858209
- 203. Schembri, M., et al. Outcomes of loco-regional anaesthesia in ureteroscopy for stone disease: a systematic review. Curr Opin Urol, 2020. 30: 726. https://pubmed.ncbi.nlm.nih.gov/32657841
- 204. Omar, M., *et al.* Randomized comparison of 4.5/6 Fr versus 6/7.5 Fr ureteroscopes for laser lithotripsy of lower/middle ureteral calculi: towards optimization of efficacy and safety of semirigid ureteroscopy. World J Urol, 2022. 40: 3075. https://pubmed.ncbi.nlm.nih.gov/36208314
- 205. Wu, T., et al. Ureteroscopic Lithotripsy versus Laparoscopic Ureterolithotomy or Percutaneous Nephrolithotomy in the Management of Large Proximal Ureteral Stones: A Systematic Review and Meta-Analysis. Urol Int, 2017. 99: 308. https://pubmed.ncbi.nlm.nih.gov/28586770
- 206. Agrawal, S., et al. Initial experience with slimmest single-use flexible ureteroscope Uscope PU3033A (PUSEN) in retrograde intrarenal surgery and its comparison with Uscope PU3022a: a single-center prospective study. World J Urol, 2021. 39: 3957. https://pubmed.ncbi.nlm.nih.gov/33970313
- 207. Van Compernolle, D., et al. Reusable, Single-Use, or Both: A Cost Efficiency Analysis of Flexible Ureterorenoscopes After 983 Cases. J Endourol, 2021. 35: 1454. https://pubmed.ncbi.nlm.nih.gov/33775101
- 208. Dragos, L.B., *et al.* Characteristics of current digital single-use flexible ureteroscopes versus their reusable counterparts: an in-vitro comparative analysis. Transl Androl Urol, 2019. 8: S359. https://pubmed.ncbi.nlm.nih.gov/31656742
- 209. Davis, N.F., et al. Carbon Footprint in Flexible Ureteroscopy: A Comparative Study on the Environmental Impact of Reusable and Single-Use Ureteroscopes. J Endourol, 2018. 32: 214. https://pubmed.ncbi.nlm.nih.gov/29373918
- 210. Dickstein, R.J., *et al.* Is a safety wire necessary during routine flexible ureteroscopy? J Endourol, 2010. 24: 1589.

- 211. Eandi, J.A., *et al.* Evaluation of the impact and need for use of a safety guidewire during ureteroscopy. J Endourol, 2008. 22: 1653. https://pubmed.ncbi.nlm.nih.gov/18721045
- 212. Ulvik, O., et al. Ureteroscopy with and without safety guide wire: should the safety wire still be mandatory? J Endourol, 2013. 27: 1197. https://pubmed.ncbi.nlm.nih.gov/23795760

214. Subiela, J.D., et al. Systematic Review and Meta-Analysis Comparing Fluoroless Ureteroscopy and Conventional Ureteroscopy in the Management of Ureteral and Renal Stones. J Endourol, 2021. 35: 417. https://pubmed.ncbi.nlm.nih.gov/33076706 215. Ambani, S.N., et al. Ureteral stents for impassable ureteroscopy. J Endourol, 2013. 27: 549. https://pubmed.ncbi.nlm.nih.gov/23066997 216. Pace, K.T., et al. Same Session Bilateral Ureteroscopy for Multiple Stones: Results from the CROES URS Global Study. J Urol, 2017. 198: 130. https://pubmed.ncbi.nlm.nih.gov/28163031 Ge, H., et al. Bilateral Same-Session Ureteroscopy for Treatment of Ureteral Calculi: A Systematic 217. Review and Meta-Analysis. J Endourol, 2016. 30: 1169. https://pubmed.ncbi.nlm.nih.gov/27626367 218. Karim, S.S., et al. Role of pelvicalyceal anatomy in the outcomes of retrograde intrarenal surgery (RIRS) for lower pole stones: outcomes with a systematic review of literature. Urolithiasis, 2020. 48: 263. https://pubmed.ncbi.nlm.nih.gov/31372691 219. Dragos, L.B., et al. Which Flexible Ureteroscopes (Digital vs. Fiber-Optic) Can Easily Reach the Difficult Lower Pole Calices and Have Better End-Tip Deflection: In Vitro Study on K-Box. A PETRA Evaluation. J Endourol, 2017. 31: 630. https://pubmed.ncbi.nlm.nih.gov/28478744 220. Lane, J., et al. Correlation of Operative Time with Outcomes of Ureteroscopy and Stone Treatment: a Systematic Review of Literature. Curr Urol Rep, 2020. 21: 17. https://pubmed.ncbi.nlm.nih.gov/32211985 221. Stern, J.M., et al. Safety and efficacy of ureteral access sheaths. J Endourol, 2007. 21: 119. https://pubmed.ncbi.nlm.nih.gov/17338606 222. L'Esperance J, O., et al. Effect of ureteral access sheath on stone-free rates in patients undergoing ureteroscopic management of renal calculi. Urology, 2005. 66: 252. https://pubmed.ncbi.nlm.nih.gov/16040093 223. Traxer, O., et al. Prospective evaluation and classification of ureteral wall injuries resulting from insertion of a ureteral access sheath during retrograde intrarenal surgery. J Urol, 2013. 189: 580. https://pubmed.ncbi.nlm.nih.gov/22982421 224. Traxer, O., et al. Differences in renal stone treatment and outcomes for patients treated either with or without the support of a ureteral access sheath: The Clinical Research Office of the Endourological Society Ureteroscopy Global Study. World J Urol, 2015. 33: 2137. https://pubmed.ncbi.nlm.nih.gov/25971204 225. Stern, K.L., et al. A Prospective Study Analyzing the Association Between High-grade Ureteral Access Sheath Injuries and the Formation of Ureteral Strictures. Urology, 2019. 128: 38. https://pubmed.ncbi.nlm.nih.gov/30878681 226. Aykanat, C., et al. The Impact of Ureteral Access Sheath Size on Perioperative Parameters and Postoperative Ureteral Stricture in Retrograde Intrarenal Surgery. J Endourol, 2022. 36: 1013. https://pubmed.ncbi.nlm.nih.gov/35229631 227. Lima, A., et al. Impact of ureteral access sheath on renal stone treatment: prospective comparative non-randomised outcomes over a 7-year period. World J Urol, 2020. 38: 1329. https://pubmed.ncbi.nlm.nih.gov/31342247 228. Santiago, J.E., et al. To Dust or Not To Dust: a Systematic Review of Ureteroscopic Laser Lithotripsy Techniques. Curr Urol Rep, 2017. 18: 32. https://pubmed.ncbi.nlm.nih.gov/28271355 229. Bach, T., et al. Working tools in flexible ureterorenoscopy--influence on flow and deflection: what does matter? J Endourol, 2008. 22: 1639. https://pubmed.ncbi.nlm.nih.gov/18620506 230. Leijte, J.A., et al. Holmium laser lithotripsy for ureteral calculi: predictive factors for complications and success. J Endourol, 2008. 22: 257. https://pubmed.ncbi.nlm.nih.gov/18294030 231. Pierre, S., et al. Holmium laser for stone management. World J Urol, 2007. 25: 235. https://pubmed.ncbi.nlm.nih.gov/17340157 232. Ventimiglia, E., et al. High- and Low-Power Laser Lithotripsy Achieves Similar Results: A Systematic Review and Meta-Analysis of Available Clinical Series. J Endourol, 2021. 35: 1146. https://pubmed.ncbi.nlm.nih.gov/33677987 UROLITHIASIS - LIMITED UPDATE APRIL 2024

Peng, L., et al. Fluoroless versus conventional ureteroscopy for urinary stones: a systematic review

and meta-analysis. Minerva Urol Nephrol, 2021. 73: 299.

https://pubmed.ncbi.nlm.nih.gov/33016033

213.

- 233. Garcia Rojo, E., et al. Comparison of Low-Power vs High-Power Holmium Lasers in Pediatric Retrograde Intrarenal Surgery Outcomes. J Endourol, 2023. 37: 509. <u>https://pubmed.ncbi.nlm.nih.gov/36860192</u>
- 234. Sanchez-Puy, A., et al. New Generation Pulse Modulation in Holmium:YAG Lasers: A Systematic Review of the Literature and Meta-Analysis. J Clin Med, 2022. 11. https://pubmed.ncbi.nlm.nih.gov/35683595
- 235. Ibrahim, A., *et al.* Double-Blinded Prospective Randomized Clinical Trial Comparing Regular and Moses Modes of Holmium Laser Lithotripsy. J Endourol, 2020. 34: 624. https://pubmed.ncbi.nlm.nih.gov/32143552
- 236. Perri, D., *et al.* Treatment of ureteral stones with LithoEVO device and Vapor Tunnel tool. Minerva Urol Nephrol, 2023. 75: 210.
 - https://pubmed.ncbi.nlm.nih.gov/36637458
- 237. Kronenberg, P., et al. Outcomes of thulium fibre laser for treatment of urinary tract stones: results of a systematic review. Curr Opin Urol, 2021. 31: 80. https://pubmed.ncbi.nlm.nih.gov/33470684
- 238. Ulvik, O., *et al.* Thulium Fibre Laser versus Holmium:YAG for Ureteroscopic Lithotripsy: Outcomes from a Prospective Randomised Clinical Trial. Eur Urol, 2022. 82: 73. https://pubmed.ncbi.nlm.nih.gov/35300888
- 239. Haas, C.R., *et al.* Pulse-modulated Holmium:YAG Laser vs the Thulium Fiber Laser for Renal and Ureteral Stones: A Single-center Prospective Randomized Clinical Trial. J Urol, 2023. 209: 374. <u>https://pubmed.ncbi.nlm.nih.gov/36621994</u>
- 240. Chua, M.E., *et al.* Thulium fibre laser vs holmium: yttrium-aluminium-garnet laser lithotripsy for urolithiasis: meta-analysis of clinical studies. BJU Int, 2023. 131: 383. https://pubmed.ncbi.nlm.nih.gov/36260370
- 241. Garg, S., et al. Ureteroscopic laser lithotripsy versus ballistic lithotripsy for treatment of ureteric stones: a prospective comparative study. Urol Int, 2009. 82: 341. https://pubmed.ncbi.nlm.nih.gov/19440025
- 242. Binbay, M., *et al.* Evaluation of pneumatic versus holmium:YAG laser lithotripsy for impacted ureteral stones. Int Urol Nephrol, 2011. 43: 989.
 - https://pubmed.ncbi.nlm.nih.gov/21479563
- 243. Ahmed, M., *et al.* Systematic evaluation of ureteral occlusion devices: insertion, deployment, stone migration, and extraction. Urology, 2009. 73: 976. https://pubmed.ncbi.nlm.nih.gov/19394493
- 244. John, T.T., *et al.* Adjunctive tamsulosin improves stone free rate after ureteroscopic lithotripsy of large renal and ureteric calculi: a prospective randomized study. Urology, 2010. 75: 1040. https://pubmed.ncbi.nlm.nih.gov/19819530
- 245. Chen, H., et al. The Outcomes of Pre-Stenting on Renal and Ureteral Stones: A Meta-Analysis. Urol Int, 2022. 106: 495.
 - https://pubmed.ncbi.nlm.nih.gov/34788759
- 246. Law, Y.X.T., et al. Role of pre-operative ureteral stent on outcomes of retrograde intra-renal surgery (RIRS): systematic review and meta-analysis of 3831 patients and comparison of Asian and non-Asian cohorts. World J Urol, 2022. 40: 1377. https://pubmed.ncbi.nlm.nih.gov/35072738
- 247. Allam, C.L., *et al.* The Role of Routine Ureteral Stenting Following Uncomplicated Ureteroscopic Treatment for Upper Ureteral and Renal Stones: A Randomized Control Trial. J Endourol, 2023. 37: 257.
 - https://pubmed.ncbi.nlm.nih.gov/36401514
- 248. Ehsanullah, S.A., et al. Stent diameter and stent-related symptoms, does size matter? A systematic review and meta-analysis. Urol Ann, 2022. 14: 295. https://pubmed.ncbi.nlm.nih.gov/36505999
- 249. Moon, T.D. Ureteral stenting--an obsolete procedure? J Urol, 2002. 167: 1984. https://pubmed.ncbi.nlm.nih.gov/11956423
- Jian, Z., et al. Combination of solifenacin and tamsulosin may provide additional beneficial effects for ureteral stent-related symptoms-outcomes from a network meta-analysis. World J Urol, 2019. 37: 289.
 - https://pubmed.ncbi.nlm.nih.gov/30030658
- 251. Cheng, C., et al. The Effect of Preoperative Tamsulosin on Ureteral Navigation, Operation, and Safety: A Systematic Review and Meta-Analysis. Urol Int, 2023. 107: 557. <u>https://pubmed.ncbi.nlm.nih.gov/36812907</u>

- 252. Kim, J.K., *et al.* Silodosin for Prevention of Ureteral Injuries Resulting from Insertion of a Ureteral Access Sheath: A Randomized Controlled Trial. Eur Urol Focus, 2022. 8: 572. https://pubmed.ncbi.nlm.nih.gov/33741297
- 253. Dasgupta, R., *et al.* Shockwave Lithotripsy Versus Ureteroscopic Treatment as Therapeutic Interventions for Stones of the Ureter (TISU): A Multicentre Randomised Controlled Non-inferiority Trial. Eur Urol, 2021. 80: 46.

- 254. Perez Castro, E., et al. Differences in ureteroscopic stone treatment and outcomes for distal, mid-, proximal, or multiple ureteral locations: the Clinical Research Office of the Endourological Society ureteroscopy global study. Eur Urol, 2014. 66: 102. https://pubmed.ncbi.nlm.nih.gov/24507782
- 255. Bhojani, N., *et al.* Risk Factors for Urosepsis After Ureteroscopy for Stone Disease: A Systematic Review with Meta-Analysis. J Endourol, 2021. 35: 991.
- https://pubmed.ncbi.nlm.nih.gov/33544019
- 256. De Coninck, V., *et al.* Complications of ureteroscopy: a complete overview. World J Urol, 2020. 38: 2147.

https://pubmed.ncbi.nlm.nih.gov/31748953

- 257. Bhanot, R., et al. Predictors and Strategies to Avoid Mortality Following Ureteroscopy for Stone Disease: A Systematic Review from European Association of Urologists Sections of Urolithiasis (EULIS) and Uro-technology (ESUT). Eur Urol Focus, 2022. 8: 598. https://pubmed.ncbi.nlm.nih.gov/33674255
- 258. Dupuis, H., *et al.* Preoperative risk factors for complications after flexible and rigid ureteroscopy for stone disease: A French multicentric study. Prog Urol, 2022. 32: 593. https://pubmed.ncbi.nlm.nih.gov/35314100
- 259. Chugh, S., *et al.* Predictors of Urinary Infections and Urosepsis After Ureteroscopy for Stone Disease: a Systematic Review from EAU Section of Urolithiasis (EULIS). Curr Urol Rep, 2020. 21: 16. https://pubmed.ncbi.nlm.nih.gov/32211969
- 260. Tokas, T., *et al.* Role of Intrarenal Pressure in Modern Day Endourology (Mini-PCNL and Flexible URS): a Systematic Review of Literature. Curr Urol Rep, 2021. 22: 52. https://pubmed.ncbi.nlm.nih.gov/34622341
- 261. Zeng, G., *et al.* Mini Percutaneous Nephrolithotomy Is a Noninferior Modality to Standard Percutaneous Nephrolithotomy for the Management of 20-40mm Renal Calculi: A Multicenter Randomized Controlled Trial. Eur Urol, 2021. 79: 114. <u>https://pubmed.ncbi.nlm.nih.gov/32994063</u>
- 262. Ruhayel, Y., *et al.* Tract Sizes in Miniaturized Percutaneous Nephrolithotomy: A Systematic Review from the European Association of Urology Urolithiasis Guidelines Panel. Eur Urol, 2017. 72: 220. https://pubmed.ncbi.nlm.nih.gov/28237786
- 263. Tikkinen, K.A.O., *et al.*, EAU Guidelines on Thromboprophylaxis in Urological Surgery, in EAU Guidelines, Edn. published as the 32nd EAU Annual Meeting, London, E.A.o.U.G. Office, Editor. 2017, European Association of Urology Guidelines Office: Arnhem, The Netherlands.
- 264. Castellani, D., *et al.* The Impact of Lasers in Percutaneous Nephrolithotomy Outcomes: Results from a Systematic Review and Meta-Analysis of Randomized Comparative Trials. J Endourol, 2022. 36: 151.

https://pubmed.ncbi.nlm.nih.gov/34314230

265. Abdullatif, V.A., *et al.* The Safety and Efficacy of Endoscopic Combined Intrarenal Surgery (ECIRS) versus Percutaneous Nephrolithotomy (PCNL): A Systematic Review and Meta-Analysis. Adv Urol, 2022. 2022: 1716554.

https://pubmed.ncbi.nlm.nih.gov/35898579

266. Cracco, C.M., *et al.* Endoscopic combined intrarenal surgery (ECIRS) - Tips and tricks to improve outcomes: A systematic review. Turk J Urol, 2020. 46: S46.

https://pubmed.ncbi.nlm.nih.gov/32877638

- 267. Wen, J., et al. Minimally invasive percutaneous nephrolithotomy versus endoscopic combined intrarenal surgery with flexible ureteroscope for partial staghorn calculi: A randomised controlled trial. Int J Surg, 2016. 28: 22. <u>https://pubmed.ncbi.nlm.nih.gov/26898135</u>
- 268. Davis, N.F., *et al.* Comparison of Treatment Outcomes for Fluoroscopic and Fluoroscopy-free Endourological Procedures: A Systematic Review on Behalf of the European Association of Urology Urolithiasis Guidelines Panel. Eur Urol Focus, 2023. 9: 938.

- 269. Yang, Y.H., et al. Ultrasound-guided versus fluoroscopy-guided percutaneous nephrolithotomy: a systematic review and meta-analysis. World J Urol, 2019. 37: 777. <u>https://pubmed.ncbi.nlm.nih.gov/30244337</u>
- 270. Zhu, W., *et al.* A prospective and randomised trial comparing fluoroscopic, total ultrasonographic, and combined guidance for renal access in mini-percutaneous nephrolithotomy. BJU Int, 2017. 119: 612. https://pubmed.ncbi.nlm.nih.gov/27862806
- 271. Isac, W., et al. Endoscopic-guided versus fluoroscopic-guided renal access for percutaneous nephrolithotomy: a comparative analysis. Urology, 2013. 81: 251. https://pubmed.ncbi.nlm.nih.gov/23374772
- 272. Taguchi, K., *et al.* Ureteroscopy-assisted puncture for ultrasonography-guided renal access significantly improves overall treatment outcomes in endoscopic combined intrarenal surgery. Int J Urol, 2021. 28: 913.
 - https://pubmed.ncbi.nlm.nih.gov/34028095
- 273. Srivastava, A., et al. A prospective randomized study comparing the four tract dilation methods of percutaneous nephrolithotomy. World J Urol, 2017. 35: 803. https://pubmed.ncbi.nlm.nih.gov/27614706
- 274. Armas-Phan, M., *et al.* Ultrasound guidance can be used safely for renal tract dilatation during percutaneous nephrolithotomy. BJU Int, 2020. 125: 284. https://pubmed.ncbi.nlm.nih.gov/30811835
- 275. Wu, Y., et al. Effectiveness and safety of four tract dilation methods of percutaneous nephrolithotomy: A meta-analysis. Exp Ther Med, 2020. 19: 2661. https://pubmed.ncbi.nlm.nih.gov/32256747
- 276. Mykoniatis, I., et al. Mini percutaneous nephrolithotomy versus standard percutaneous nephrolithotomy for the management of renal stones over 2 cm: a systematic review and metaanalysis of randomized controlled trials. Minerva Urol Nephrol, 2022. 74: 409. <u>https://pubmed.ncbi.nlm.nih.gov/35147386</u>
- 277. Deng, J., *et al.* Standard versus mini-percutaneous nephrolithotomy for renal stones: a meta-analysis. Scand J Surg, 2021. 110: 301.
 - https://pubmed.ncbi.nlm.nih.gov/32489145
- 278. Sharma, G., *et al.* Mini Versus Standard Percutaneous Nephrolithotomy for the Management of Renal Stone Disease: Systematic Review and Meta-analysis of Randomized Controlled Trials. Eur Urol Focus, 2022. 8: 1376.
 - https://pubmed.ncbi.nlm.nih.gov/34404619
- 279. Tzelves, L., *et al.* Suction Use During Endourological Procedures. Curr Urol Rep, 2020. 21: 46. <u>https://pubmed.ncbi.nlm.nih.gov/32915324</u>
- 280. Lu, Y., et al. Randomized prospective trial of tubeless versus conventional minimally invasive percutaneous nephrolithotomy. World J Urol, 2013. 31: 1303. <u>https://pubmed.ncbi.nlm.nih.gov/22903789</u>
- 281. Cormio, L., et al. Exit strategies following percutaneous nephrolithotomy (PCNL): a comparison of surgical outcomes in the Clinical Research Office of the Endourological Society (CROES) PCNL Global Study. World J Urol, 2013. 31: 1239.
 - https://pubmed.ncbi.nlm.nih.gov/22752586
- 282. Chen, Z.J., *et al.* Comparison of tubeless percutaneous nephrolithotomy and standard percutaneous nephrolithotomy for kidney stones: A meta-analysis of randomized trials. Asian J Surg, 2020. 43: 60. https://pubmed.ncbi.nlm.nih.gov/30782495
- 283. Lee, J.Y., et al. Intraoperative and postoperative feasibility and safety of total tubeless, tubeless, small-bore tube, and standard percutaneous nephrolithotomy: a systematic review and network meta-analysis of 16 randomized controlled trials. BMC Urol, 2017. 17: 48. https://pubmed.ncbi.nlm.nih.gov/28655317
- 284. Garofalo, M., *et al.* Tubeless procedure reduces hospitalization and pain after percutaneous nephrolithotomy: results of a multivariable analysis. Urolithiasis, 2013. 41: 347. https://pubmed.ncbi.nlm.nih.gov/23632910
- 285. Jiang, H., et al. Improving Drainage After Percutaneous Nephrolithotomy Based on Health-Related Quality of Life: A Prospective Randomized Study. J Endourol, 2017. 31: 1131. https://pubmed.ncbi.nlm.nih.gov/28891320
- 286. Seitz, C., et al. Incidence, prevention, and management of complications following percutaneous nephrolitholapaxy. Eur Urol, 2012. 61: 146. https://pubmed.ncbi.nlm.nih.gov/21978422

- 287. Liu, M., et al. Preoperative Midstream Urine Cultures vs Renal Pelvic Urine Culture or Stone Culture in Predicting Systemic Inflammatory Response Syndrome and Urosepsis After Percutaneous Nephrolithotomy: A Systematic Review and Meta-Analysis. J Endourol, 2021. 35: 1467. <u>https://pubmed.ncbi.nlm.nih.gov/34128382</u>
- 288. Yu, J., et al. Antibiotic prophylaxis in perioperative period of percutaneous nephrolithotomy: a systematic review and meta-analysis of comparative studies. World J Urol, 2020. 38: 1685. https://pubmed.ncbi.nlm.nih.gov/31562533
- Yoshida, S., et al. The significance of intraoperative renal pelvic urine and stone cultures for patients at a high risk of post-ureteroscopy systemic inflammatory response syndrome. Urolithiasis, 2019. 47: 533.

- 290. Zhong, W., *et al.* Does a smaller tract in percutaneous nephrolithotomy contribute to high renal pelvic pressure and postoperative fever? J Endourol, 2008. 22: 2147. https://pubmed.ncbi.nlm.nih.gov/18811571
- 291. Wu, C., et al. Comparison of renal pelvic pressure and postoperative fever incidence between standard- and mini-tract percutaneous nephrolithotomy. Kaohsiung J Med Sci, 2017. 33: 36. https://pubmed.ncbi.nlm.nih.gov/28088272
- 292. Croghan, S.M., *et al.* Upper urinary tract pressures in endourology: a systematic review of range, variables and implications. BJU Int, 2023. 131: 267.

https://pubmed.ncbi.nlm.nih.gov/35485243

- 293. Baccaglini, W., *et al.* Tranexamic Acid Use for Hemorrhagic Events Prevention in Percutaneous Nephrolithotomy: Systematic Review and Meta-Analysis. J Endourol, 2022. 36: 906. <u>https://pubmed.ncbi.nlm.nih.gov/35072547</u>
- 294. Kallidonis, P., *et al.* Is There Any Clinical Benefit for Peri-operative Administration of Tranexamic Acid for Patients Undergoing Percutaneous Nephrolithotomy? A Systematic Review and Meta-analysis. Curr Urol Rep, 2021. 22: 65.

https://pubmed.ncbi.nlm.nih.gov/34913084

- 295. Lee, M.J., *et al.* The Efficacy and Safety of Tranexamic Acid in the Management of Perioperative Bleeding After Percutaneous Nephrolithotomy: A Systematic Review and Meta-Analysis of Comparative Studies. J Endourol, 2022. 36: 303. <u>https://pubmed.ncbi.nlm.nih.gov/34569280</u>
- 296. Wang, Z., *et al.* Comparison of safety and efficacy between single-tract and multiple-tract percutaneous nephrolithotomy treatment of complex renal calculi: a systematic review and metaanalysis. Minerva Urol Nephrol, 2021. 73: 731.

https://pubmed.ncbi.nlm.nih.gov/33781020

- 297. Winoker, J.S., *et al.* Opioid-Sparing Analgesic Effects of Peripheral Nerve Blocks in Percutaneous Nephrolithotomy: A Systematic Review. J Endourol, 2022. 36: 38. https://pubmed.ncbi.nlm.nih.gov/34314232
- 298. Ma, Y., et al. Efficiency and Safety of Erector Spinae Plane Block in Percutaneous Nephrolithotomy: A Meta-Analysis Based on Randomized Controlled Trials. Urology, 2022. 168: 64. https://pubmed.ncbi.nlm.nih.gov/35902000
- 299. Wang, J., *et al.* The Effect of Local Anesthetic Infiltration Around Nephrostomy Tract on Postoperative Pain Control after Percutaneous Nephrolithotomy: A Systematic Review and Meta-Analysis. Urol Int, 2016. 97: 125.

https://pubmed.ncbi.nlm.nih.gov/27379709

- 300. Zheng, C., et al. Efficiency and safety of quadratus lumborum block in percutaneous nephrolithotomy: a meta-analysis of randomized controlled studies. Urolithiasis, 2022. 51: 12. <u>https://pubmed.ncbi.nlm.nih.gov/36480122</u>
- 301. Mariappan, P., et al. Stone and pelvic urine culture and sensitivity are better than bladder urine as predictors of urosepsis following percutaneous nephrolithotomy: a prospective clinical study. J Urol, 2005. 173: 1610.

https://pubmed.ncbi.nlm.nih.gov/15821509

- 302. Deng, T., et al. Antibiotic prophylaxis in ureteroscopic lithotripsy: a systematic review and metaanalysis of comparative studies. BJU Int, 2018. 122: 29. <u>https://pubmed.ncbi.nlm.nih.gov/29232047</u>
- 303. Chew, B.H., *et al.* A Single Dose of Intraoperative Antibiotics Is Sufficient to Prevent Urinary Tract Infection During Ureteroscopy. J Endourol, 2016. 30: 63.
- <u>https://pubmed.ncbi.nlm.nih.gov/26413885</u>
 304. Schnabel, M.J., *et al.* Perioperative antibiotic prophylaxis for stone therapy. Curr Opin Urol, 2019. 29: 89.

305.	Gravas, S., <i>et al.</i> Postoperative infection rates in low risk patients undergoing percutaneous nephrolithotomy with and without antibiotic prophylaxis: a matched case control study. J Urol, 2012. 188: 843.
	https://pubmed.ncbi.nlm.nih.gov/22819398
306.	Danilovic, A., et al. One week pre-operative oral antibiotics for percutaneous nephrolithotomy reduce
	risk of infection: a systematic review and meta-analysis. Int Braz J Urol, 2023. 49: 184.
	https://pubmed.ncbi.nlm.nih.gov/36515617
307.	Jung, H.D., et al. Antibiotic prophylaxis for percutaneous nephrolithotomy: An updated systematic
	review and meta-analysis. PLoS One, 2022. 17: e0267233.
	https://pubmed.ncbi.nlm.nih.gov/35427380
308.	Sur, R.L., <i>et al.</i> A Randomized Controlled Trial of Preoperative Prophylactic Antibiotics for Percutaneous Nephrolithotomy in Moderate to High Infectious Risk Population: A Report from the EDGE Consortium. J Urol, 2021. 205: 1379.
	https://pubmed.ncbi.nlm.nih.gov/33369488
309.	Zhou, G., et al. The influencing factors of infectious complications after percutaneous
005.	nephrolithotomy: a systematic review and meta-analysis. Urolithiasis, 2022. 51: 17.
	https://pubmed.ncbi.nlm.nih.gov/36515726
310.	Klingler, H.C., et al. Stone treatment and coagulopathy. Eur Urol, 2003. 43: 75.
	https://pubmed.ncbi.nlm.nih.gov/12507547
311.	Kefer, J.C., et al. Safety and efficacy of percutaneous nephrostolithotomy in patients on
	anticoagulant therapy. J Urol, 2009. 181: 144.
	https://pubmed.ncbi.nlm.nih.gov/19012931
312.	Baron, T.H., et al. Management of antithrombotic therapy in patients undergoing invasive procedures.
	N Engl J Med, 2013. 368: 2113.
	https://pubmed.ncbi.nlm.nih.gov/23718166
313.	Naspro, R., et al. Antiplatelet therapy in patients with coronary stent undergoing urologic surgery: is it
	still no man's land? Eur Urol, 2013. 64: 101.
214	https://pubmed.ncbi.nlm.nih.gov/23428067
314.	Eberli, D., <i>et al.</i> Urological surgery and antiplatelet drugs after cardiac and cerebrovascular accidents. J Urol, 2010. 183: 2128.
	https://pubmed.ncbi.nlm.nih.gov/20399452
315.	Razvi, H., et al. Risk factors for perinephric hematoma formation after shockwave lithotripsy: a
0.0	matched case-control analysis. J Endourol, 2012. 26: 1478.
	https://pubmed.ncbi.nlm.nih.gov/22712655
316.	Schnabel, M.J., et al. Incidence and risk factors of renal hematoma: a prospective study of 1,300 SWL
	treatments. Urolithiasis, 2014. 42: 247.
	https://pubmed.ncbi.nlm.nih.gov/24419328
317.	Schnabel, M.J., et al. Antiplatelet and anticoagulative medication during shockwave lithotripsy. J
	Endourol, 2014. 28: 1034.
	https://pubmed.ncbi.nlm.nih.gov/24851726
318.	Aboumarzouk, O.M., et al. Flexible ureteroscopy and holmium:YAG laser lithotripsy for stone disease
	in patients with bleeding diathesis: a systematic review of the literature. Int Braz J Urol, 2012. 38:
	298. https://pubmed.ncbi.nlm.nih.gov/22765861
319.	Elkoushy, M.A., et al. Ureteroscopy in patients with coagulopathies is associated with lower stone-
519.	free rate and increased risk of clinically significant hematuria. Int Braz J Urol, 2012. 38: 195.
	https://pubmed.ncbi.nlm.nih.gov/22555043
320.	Sharaf, A., et al. Ureteroscopy in Patients with Bleeding Diatheses, Anticoagulated, and on Anti-
	Platelet Agents: A Systematic Review and Meta-Analysis of the Literature. J Endourol, 2017. 31:
	1217.
	https://pubmed.ncbi.nlm.nih.gov/29048211
321.	Sahin, C., et al. Transient cessation of antiplatelet medication before percutaneous stone surgery:
	does it have any safety concern on bleeding related problems? Urolithiasis, 2017. 45: 371.
	https://pubmed.ncbi.nlm.nih.gov/27677484
322.	Kuo, R.L., et al. Use of ureteroscopy and holmium:YAG laser in patients with bleeding diatheses.
	Urology, 1998. 52: 609.
222	https://pubmed.ncbi.nlm.nih.gov/9763079
323.	Altay, B., et al. A review study to evaluate holmium: YAG laser lithotripsy with flexible ureteroscopy in patients on ongoing oral anticoagulant therapy. Lasers Med Sci, 2017. 32: 1615.
	https://pubmed.ncbi.nlm.nih.gov/28733910

324. Gupta, A.D., *et al.* Coronary stent management in elective genitourinary surgery. BJU Int, 2012. 110: 480.

https://pubmed.ncbi.nlm.nih.gov/22192977

- 325. Delakas, D., *et al.* Independent predictors of failure of shockwave lithotripsy for ureteral stones employing a second-generation lithotripter. J Endourol, 2003. 17: 201. https://pubmed.ncbi.nlm.nih.gov/12816580
- 326. El-Nahas, A.R., *et al.* A prospective multivariate analysis of factors predicting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution noncontrast computed tomography. Eur Urol, 2007. 51: 1688.

https://pubmed.ncbi.nlm.nih.gov/17161522

- 327. Lee, J.Y., *et al.* Stone heterogeneity index as the standard deviation of Hounsfield units: A novel predictor for shock-wave lithotripsy outcomes in ureter calculi. Sci Rep, 2016. 6: 23988. https://pubmed.ncbi.nlm.nih.gov/27035621
- 328. Ohmori, K., *et al.* Effects of shock waves on the mouse fetus. J Urol, 1994. 151: 255. https://pubmed.ncbi.nlm.nih.gov/8254823
- 329. Streem, S.B., *et al.* Extracorporeal shock wave lithotripsy in patients with bleeding diatheses. J Urol, 1990. 144: 1347.

https://pubmed.ncbi.nlm.nih.gov/2231922

- 330. Carey, S.W., *et al.* Extracorporeal shock wave lithotripsy for patients with calcified ipsilateral renal arterial or abdominal aortic aneurysms. J Urol, 1992. 148: 18. https://pubmed.ncbi.nlm.nih.gov/1613866
- 331. Reeves, T., *et al.* Role of Endourological Procedures (PCNL and URS) on Renal Function: a Systematic Review. Curr Urol Rep, 2020. 21: 21.

https://pubmed.ncbi.nlm.nih.gov/32318942

- 332. Mehra, K., et al. Percutaneous Nephrolithotomy in Patients with Chronic Kidney Disease: A Systematic Review. Urol Int, 2022. 106: 461. <u>https://pubmed.ncbi.nlm.nih.gov/35045417</u>
- 333. Shah, T.T., *et al.* Factors associated with spontaneous stone passage in a contemporary cohort of patients presenting with acute ureteric colic: results from the Multi-centre cohort study evaluating the role of Inflammatory Markers In patients presenting with acute ureteric Colic (MIMIC) study. BJU Int, 2019. 124: 504.

- 334. Skolarikos, A., *et al.* The role for active monitoring in urinary stones: a systematic review. J Endourol, 2010. 24: 923.
 - https://pubmed.ncbi.nlm.nih.gov/20482232
- 335. Yallappa, S., *et al.* Natural History of Conservatively Managed Ureteral Stones: Analysis of 6600 Patients. J Endourol, 2018. 32: 371.
 - https://pubmed.ncbi.nlm.nih.gov/29482379
- 336. Skolarikos, A., et al. Indications, prediction of success and methods to improve outcome of shock wave lithotripsy of renal and upper ureteral calculi. Arch Ital Urol Androl, 2010. 82: 56. <u>https://pubmed.ncbi.nlm.nih.gov/20593724</u>
- 337. Guler, Y. Non-contrast computed tomography-based factors in predicting ESWL success: A systematic review and meta-analysis. Prog Urol, 2023. 33: 27. <u>https://pubmed.ncbi.nlm.nih.gov/36202729</u>
- 338. Wang, W., et al. Ureteroscopy Is Equally Efficient and Safe in Obese and Morbidly Obese Patients: A Systematic Review and Meta-Analysis. Front Surg, 2022. 9: 736641. https://pubmed.ncbi.nlm.nih.gov/35252322
- 339. Drake, T., *et al.* What are the Benefits and Harms of Ureteroscopy Compared with Shock-wave Lithotripsy in the Treatment of Upper Ureteral Stones? A Systematic Review. Eur Urol, 2017. 72: 772. https://pubmed.ncbi.nlm.nih.gov/28456350
- 340. Wang, W., et al. Does previous unsuccessful shockwave lithotripsy influence the outcomes of ureteroscopy?-a systematic review and meta-analysis. Transl Androl Urol, 2021. 10: 2122. https://pubmed.ncbi.nlm.nih.gov/34159093
- Alsawi, M., et al. Primary versus delayed ureteroscopy for ureteric stones: A systematic review and meta-analysis. Journal of Clinical Urology, 2022: 20514158221088687. https://journals.sagepub.com/doi/10.1177/20514158221088687
- 342. Peng, C.X., et al. Efficacy of emergency extracorporeal shock wave lithotripsy in the treatment of ureteral stones: a meta-analysis. BMC Urol, 2023. 23: 56. https://pubmed.ncbi.nlm.nih.gov/37016405

- 343. Lai, S., et al. Optimal management of large proximal ureteral stones (>10 mm): A systematic review and meta-analysis of 12 randomized controlled trials. Int J Surg, 2020. 80: 205. <u>https://pubmed.ncbi.nlm.nih.gov/32622059</u>
- 344. Sorensen, M.D., et al. Removal of Small, Asymptomatic Kidney Stones and Incidence of Relapse. N Engl J Med, 2022. 387: 506. https://pubmed.ncbi.nlm.nih.gov/35947709
- 345. Han, D.S., *et al.* The Durability of Active Surveillance in Patients with Asymptomatic Kidney Stones: A Systematic Review. J Endourol, 2019. 33: 598.
 <u>https://pubmed.ncbi.nlm.nih.gov/31044612</u>
- 346. Inci, K., *et al.* Prospective long-term followup of patients with asymptomatic lower pole caliceal stones. J Urol, 2007. 177: 2189.
- https://pubmed.ncbi.nlm.nih.gov/17509315

 347.
 Lovegrove, C.E., et al. Natural history of small asymptomatic kidney and residual stones over a long-term follow-up: systematic review over 25 years. BJU Int, 2022. 129: 442.

 https://pubmed.ncbi.nlm.nih.gov/34157218
- Brandt, B., et al. Painful caliceal calculi. The treatment of small nonobstructing caliceal calculi in patients with symptoms. Scand J Urol Nephrol, 1993. 27: 75. https://pubmed.ncbi.nlm.nih.gov/8493473
- 349. Argyropoulos, A.N., *et al.* Evaluation of outcome following lithotripsy. Curr Opin Urol, 2010. 20: 154. https://pubmed.ncbi.nlm.nih.gov/19898239
- 350. Srisubat, A., et al. Extracorporeal shock wave lithotripsy (ESWL) versus percutaneous nephrolithotomy (PCNL) or retrograde intrarenal surgery (RIRS) for kidney stones. Cochrane Database Syst Rev, 2014. 11: CD007044. https://pubmed.ncbi.nlm.nih.gov/25418417
- 351. Sahinkanat, T., et al. Evaluation of the effects of relationships between main spatial lower pole calyceal anatomic factors on the success of shock-wave lithotripsy in patients with lower pole kidney stones. Urology, 2008. 71: 801.
 - https://pubmed.ncbi.nlm.nih.gov/18279941
- 352. Danuser, H., *et al.* Extracorporeal shock wave lithotripsy of lower calyx calculi: how much is treatment outcome influenced by the anatomy of the collecting system? Eur Urol, 2007. 52: 539. https://pubmed.ncbi.nlm.nih.gov/17400366
- 353. Dorantes-Carrillo, L.A., *et al.* Retrograde Intrarenal Surgery Versus Miniaturized Percutaneous Nephrolithotomy for Kidney Stones >1cm: A Systematic Review and Meta-analysis of Randomized Trials. Eur Urol Focus, 2022. 8: 259.
 - https://pubmed.ncbi.nlm.nih.gov/33627307
- Bosio, A., et al. Flexible Ureterorenoscopy Versus Shockwave Lithotripsy for Kidney Stones </=2 cm: A Randomized Controlled Trial. Eur Urol Focus, 2022. 8: 1816. <u>https://pubmed.ncbi.nlm.nih.gov/35466071</u>
- 355. Kallidonis, P., et al. The best treatment approach for lower calyceal stones </=20 mm in maximal diameter: mini percutaneous nephrolithotripsy, retrograde intrarenal surgery or shock wave lithotripsy. A systematic review and meta-analysis of the literature conducted by the European Section of Uro-Technology and Young Academic Urologists. Minerva Urol Nephrol, 2021. 73: 711. https://pubmed.ncbi.nlm.nih.gov/34156200
- 356. Preminger, G.M. Management of lower pole renal calculi: shock wave lithotripsy versus percutaneous nephrolithotomy versus flexible ureteroscopy. Urol Res, 2006. 34: 108. https://pubmed.ncbi.nlm.nih.gov/16463145
- 357. Zheng, C., *et al.* Extracorporeal shock wave lithotripsy versus retrograde intrarenal surgery for treatment for renal stones 1-2 cm: a meta-analysis. Urolithiasis, 2015. 43: 549.
- https://pubmed.ncbi.nlm.nih.gov/26211003

 358.
 Pearle, M.S., et al. Prospective, randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J Urol, 2005. 173: 2005.

 https://pubmed.ncbi.nlm.nih.gov/15879805
- 359. Zheng, C., et al. Retrograde intrarenal surgery versus percutaneous nephrolithotomy for treatment of renal stones >2 cm: a meta-analysis. Urol Int, 2014. 93: 417. https://pubmed.ncbi.nlm.nih.gov/25170589
- 360. Karakoyunlu, N., *et al.* A comparison of standard PCNL and staged retrograde FURS in pelvis stones over 2 cm in diameter: a prospective randomized study. Urolithiasis, 2015. 43: 283. https://pubmed.ncbi.nlm.nih.gov/25838180

361. Donaldson, J.F., *et al.* Systematic review and meta-analysis of the clinical effectiveness of shock wave lithotripsy, retrograde intrarenal surgery, and percutaneous nephrolithotomy for lower-pole renal stones. Eur Urol, 2015. 67: 612.

https://pubmed.ncbi.nlm.nih.gov/25449204

362. Fayad, M.K., *et al.* Retrograde intrarenal surgery versus percutaneous nephrolithotomy for treatment of renal pelvic stone more than 2 centimeters: a prospective randomized controlled trial. Urolithiasis, 2022. 50: 113.

https://pubmed.ncbi.nlm.nih.gov/34807274

- 363. Kumar, A., et al. A prospective, randomized comparison of shock wave lithotripsy, retrograde intrarenal surgery and miniperc for treatment of 1 to 2 cm radiolucent lower calyceal renal calculi: a single center experience. J Urol, 2015. 193: 160. <u>https://pubmed.ncbi.nlm.nih.gov/25066869</u>
- 364. Zhang, W., et al. Retrograde Intrarenal Surgery Versus Percutaneous Nephrolithotomy Versus Extracorporeal Shockwave Lithotripsy for Treatment of Lower Pole Renal Stones: A Meta-Analysis and Systematic Review. J Endourol, 2015. 29: 745.

https://pubmed.ncbi.nlm.nih.gov/25531986

365. Junbo, L., *et al.* Retrograde Intrarenal Surgery vs. Percutaneous Nephrolithotomy vs. Extracorporeal Shock Wave Lithotripsy for Lower Pole Renal Stones 10-20 mm : A Meta-analysis and Systematic Review. Urol J, 2019. 16: 97.

https://pubmed.ncbi.nlm.nih.gov/30604405

366. Tsai, S.H., et al. Comparison of the efficacy and safety of shockwave lithotripsy, retrograde intrarenal surgery, percutaneous nephrolithotomy, and minimally invasive percutaneous nephrolithotomy for lower-pole renal stones: A systematic review and network meta-analysis. Medicine (Baltimore), 2020. 99: e19403.

https://pubmed.ncbi.nlm.nih.gov/32150088

- 367. Zhang, H., *et al.* Comparison of the Efficacy of Ultra-Mini PCNL, Flexible Ureteroscopy, and Shock Wave Lithotripsy on the Treatment of 1-2 cm Lower Pole Renal Calculi. Urol Int, 2019. 102: 153. https://pubmed.ncbi.nlm.nih.gov/30352443
- 368. Kallidonis, P., et al. Systematic Review and Meta-Analysis Comparing Percutaneous Nephrolithotomy, Retrograde Intrarenal Surgery and Shock Wave Lithotripsy for Lower Pole Renal Stones Less Than 2 cm in Maximum Diameter. J Urol, 2020. 204: 427.

https://pubmed.ncbi.nlm.nih.gov/32150506

- Barone, B., et al. Retrograde intra renal surgery versus percutaneous nephrolithotomy for renal stones
 2 cm. A systematic review and meta-analysis. Minerva Urol Nefrol, 2020. 72: 441. https://pubmed.ncbi.nlm.nih.gov/32083423
- 370. Liu, M., et al. Minimally invasive nephrolithotomy versus retrograde intrarenal surgery in surgical management of Lower calyceal stones: a systematic review with meta-analysis. Int J Surg, 2023. 109: 1481.

https://pubmed.ncbi.nlm.nih.gov/37037590

371. Manikandan, R., *et al.* Do anatomic factors pose a significant risk in the formation of lower pole stones? Urology, 2007. 69: 620.

https://pubmed.ncbi.nlm.nih.gov/17445636

372. Torricelli, F.C.M., et al. Renal Stone Features Are More Important Than Renal Anatomy to Predict Shock Wave Lithotripsy Outcomes: Results from a Prospective Study with CT Follow-Up. J Endourol, 2020. 34: 63.

https://pubmed.ncbi.nlm.nih.gov/31595801

- 373. Madbouly, K., *et al.* Impact of lower pole renal anatomy on stone clearance after shock wave lithotripsy: fact or fiction? J Urol, 2001. 165: 1415.
 - https://pubmed.ncbi.nlm.nih.gov/11342888
- Abdelhamid, M., et al. A Prospective Evaluation of High-Resolution CT Parameters in Predicting Extracorporeal Shockwave Lithotripsy Success for Upper Urinary Tract Calculi. J Endourol, 2016. 30: 1227.

https://pubmed.ncbi.nlm.nih.gov/27597174

375. Gupta, N.P., *et al.* Infundibulopelvic anatomy and clearance of inferior caliceal calculi with shock wave lithotripsy. J Urol, 2000. 163: 24.

https://pubmed.ncbi.nlm.nih.gov/10604306

376. Torricelli, F.C., et al. Impact of renal anatomy on shock wave lithotripsy outcomes for lower pole kidney stones: results of a prospective multifactorial analysis controlled by computerized tomography. J Urol, 2015. 193: 2002. https://pubmed.ncbi.nlm.nih.gov/25524240

377.	Sumino, Y., <i>et al.</i> Predictors of lower pole renal stone clearance after extracorporeal shock wave lithotripsy. J Urol, 2002. 168: 1344.
378.	https://pubmed.ncbi.nlm.nih.gov/12352389 Liu, L.R., <i>et al.</i> Percussion, diuresis, and inversion therapy for the passage of lower pole kidney stones
	following shock wave lithotripsy. Cochrane Database Syst Rev, 2013: CD008569. https://pubmed.ncbi.nlm.nih.gov/24318643
379.	Chiong, E., <i>et al.</i> Randomized controlled study of mechanical percussion, diuresis, and inversion therapy to assist passage of lower pole renal calculi after shock wave lithotripsy. Urology, 2005. 65: 1070.
	https://pubmed.ncbi.nlm.nih.gov/15922429
380.	Chan, L.H., <i>et al.</i> Primary SWL Is an Efficient and Cost-Effective Treatment for Lower Pole Renal Stones Between 10 and 20 mm in Size: A Large Single Center Study. J Endourol, 2017. 31: 510. https://pubmed.ncbi.nlm.nih.gov/28355100
381.	Sebaey, A., <i>et al.</i> Flexible ureterorenoscopy (RIRS) vs. Mini- percutaneous nephrolithotomy (MINI- PCNL) for renal stones 20–30 mm a prospective randomized study. African Journal of Urology, 2022. 28: 13.
	https://afju.springeropen.com/articles/10.1186/s12301-022-00278-7
382.	Assimos, D.G., et al. The role of open stone surgery since extracorporeal shock wave lithotripsy. J Urol, 1989. 142: 263.
	https://pubmed.ncbi.nlm.nih.gov/2746742
383.	Segura, J.W. Current surgical approaches to nephrolithiasis. Endocrinol Metab Clin North Am, 1990. 19: 919.
004	https://pubmed.ncbi.nlm.nih.gov/2081519
384.	Honeck, P., et al. Does open stone surgery still play a role in the treatment of urolithiasis? Data of a primary urolithiasis center. J Endourol, 2009. 23: 1209. https://pubmed.ncbi.nlm.nih.gov/19538063
385.	Bichler, K.H., <i>et al.</i> Indications for open stone removal of urinary calculi. Urol Int, 1997. 59: 102.
000.	https://pubmed.ncbi.nlm.nih.gov/9392057
386.	Paik, M.L., <i>et al.</i> Is there a role for open stone surgery? Urol Clin North Am, 2000. 27: 323.
	https://pubmed.ncbi.nlm.nih.gov/10778474
387.	Alivizatos, G., et al. Is there still a role for open surgery in the management of renal stones? Curr Opin Urol, 2006. 16: 106.
	https://pubmed.ncbi.nlm.nih.gov/16479213
388.	Wang, X., <i>et al.</i> Laparoscopic pyelolithotomy compared to percutaneous nephrolithotomy as surgical management for large renal pelvic calculi: a meta-analysis. J Urol, 2013. 190: 888.
389.	https://pubmed.ncbi.nlm.nih.gov/23454154 Soltani, M.H., et al. Stented Versus Stentless Laparoscopic Ureterolithotomy: A Systematic Review
509.	and Meta-Analysis. J Laparoendosc Adv Surg Tech A, 2017. 27: 1269. https://pubmed.ncbi.nlm.nih.gov/28631946
390.	Mao, T., et al. Efficacy and safety of laparoscopic pyelolithotomy versus percutaneous
	nephrolithotomy for treatment of large renal stones: a meta-analysis. J Int Med Res, 2021. 49: 300060520983136.
	https://pubmed.ncbi.nlm.nih.gov/33472474
391.	Muller, P.F., <i>et al.</i> Robotic stone surgery - Current state and future prospects: A systematic review. Arab J Urol, 2018. 16: 357.
	https://pubmed.ncbi.nlm.nih.gov/30140470
392.	Mantica, G., <i>et al.</i> The fight between PCNL, laparoscopic and robotic pyelolithotomy: do we have a winner? A systematic review and meta-analysis. Minerva Urol Nephrol, 2022. 74: 169.
393.	https://pubmed.ncbi.nlm.nih.gov/35147384 Kumar, A., et al. A Prospective Randomized Comparison Between Laparoscopic Ureterolithotomy
393.	and Semirigid Ureteroscopy for Upper Ureteral Stones >2 cm: A Single-Center Experience. J Endourol, 2015. 29: 1248.
	https://pubmed.ncbi.nlm.nih.gov/25177768
394.	Torricelli, F.C., et al. Semi-rigid ureteroscopic lithotripsy versus laparoscopic ureterolithotomy for
	large upper ureteral stones: a meta - analysis of randomized controlled trials. Int Braz J Urol, 2016. 42: 645.
	https://pubmed.ncbi.nlm.nih.gov/27564273
395.	Xiao, Y., et al. Perioperative and long-term results of retroperitoneal laparoscopic pyelolithotomy versus percutaneous nephrolithotomy for staghorn calculi: a single-center randomized controlled
	trial. World J Urol, 2019. 37: 1441. https://pubmed.ncbi.nlm.nih.gov/30361956
	<u>https://pushieu.nebi.nini.nini.gov/30001330</u>

- 396. Coptcoat, M.J., *et al.* The steinstrasse: a legacy of extracorporeal lithotripsy? Eur Urol, 1988. 14: 93. https://pubmed.ncbi.nlm.nih.gov/3360043
- 397. Lucio, J., 2nd, et al. Steinstrasse predictive factors and outcomes after extracorporeal shockwave lithotripsy. Int Braz J Urol, 2011. 37: 477.

 https://pubmed.ncbi.nlm.nih.gov/21888699
 398. Moursy, E., et al. Tamsulosin as an expulsive therapy for steinstrasse after extracorporeal shock wave lithotripsy: a randomized controlled study. Scand J Urol Nephrol, 2010. 44: 315. https://pubmed.ncbi.nlm.nih.gov/20560802

- Resim, S., et al. Role of tamsulosin in treatment of patients with steinstrasse developing after extracorporeal shock wave lithotripsy. Urology, 2005. 66: 945.
 https://pubmed.ncbi.nlm.nih.gov/16286100
- 400. Rabbani, S.M. Treatment of steinstrasse by transureteral lithotripsy. Urol J, 2008. 5: 89. https://pubmed.ncbi.nlm.nih.gov/18592460
- 401. Lynch, M.F., *et al.* Percutaneous nephrostomy and ureteric stent insertion for acute renal deobstruction: Consensus based guidance. British Journal of Medical & Surgical Urology, 2008. 1: 120.

https://www.sciencedirect.com/science/article/pii/S1875974208000955

402. Rebuck, D.A., *et al.* The natural history of renal stone fragments following ureteroscopy. Urology, 2011. 77: 564.

https://pubmed.ncbi.nlm.nih.gov/21109293

403. Chew, B.H., *et al.* Natural History, Complications and Re-Intervention Rates of Asymptomatic Residual Stone Fragments after Ureteroscopy: a Report from the EDGE Research Consortium. J Urol, 2016. 195: 982.

https://pubmed.ncbi.nlm.nih.gov/26585680

- 404. Candau, C., *et al.* Natural history of residual renal stone fragments after ESWL. Eur Urol, 2000. 37: 18. https://pubmed.ncbi.nlm.nih.gov/10671779
- 405. Brain, E., *et al.* Natural History of Post-Treatment Kidney Stone Fragments: A Systematic Review and Meta-Analysis. J Urol, 2021. 206: 526.

https://pubmed.ncbi.nlm.nih.gov/33904756

- 406. Olvera-Posada, D., *et al.* Natural History of Residual Fragments After Percutaneous Nephrolithotomy: Evaluation of Factors Related to Clinical Events and Intervention. Urology, 2016. 97: 46. https://pubmed.ncbi.nlm.nih.gov/27421779
- 407. Portis, A.J., *et al.* Confident intraoperative decision making during percutaneous nephrolithotomy: does this patient need a second look? Urology, 2008. 71: 218. https://pubmed.ncbi.nlm.nih.gov/18308087
- 408. Tokas, T., *et al.* Uncovering the real outcomes of active renal stone treatment by utilizing non-contrast computer tomography: a systematic review of the current literature. World J Urol, 2017. 35: 897. https://pubmed.ncbi.nlm.nih.gov/27738806
- 409. Omar, M., *et al.* Contemporary Imaging Practice Patterns Following Ureteroscopy for Stone Disease. J Endourol, 2015. 29: 1122.
- https://pubmed.ncbi.nlm.nih.gov/25963170
- 410. Rippel, C.A., *et al.* Residual fragments following ureteroscopic lithotripsy: incidence and predictors on postoperative computerized tomography. J Urol, 2012. 188: 2246. https://pubmed.ncbi.nlm.nih.gov/23083650
- 411. Tzelves, L., *et al.* Duration of Follow-up and Timing of Discharge from Imaging Follow-up, in Adult Patients with Urolithiasis After Surgical or Medical Intervention: A Systematic Review and Metaanalysis from the European Association of Urology Guideline Panel on Urolithiasis. Eur Urol Focus, 2023. 9: 188.

- 412. Beck, E.M., et al. The fate of residual fragments after extracorporeal shock wave lithotripsy monotherapy of infection stones. J Urol, 1991. 145: 6. https://pubmed.ncbi.nlm.nih.gov/1984100
- 413. Zhou, Q., et al. Maternal and neonatal outcomes of pregnancy complicated by urolithiasis: a systematic review and meta-analysis. J Nephrol, 2021. 34: 1569. https://pubmed.ncbi.nlm.nih.gov/34173939
- 414. Salehi-Pourmehr, H., et al. Management of urolithiasis in pregnancy: A systematic review and metaanalysis. Scand J Surg, 2023. 112: 105. https://pubmed.ncbi.nlm.nih.gov/36692055

- 415. Keenan, R.A., *et al.* Symptomatic Hydronephrosis and Ureteral Calculi in Pregnancy: A Narrative Review with a Proposed Management Protocol. J Endourol, 2022. 36: 1099. https://pubmed.ncbi.nlm.nih.gov/35345895
- 416. McKnoulty, M., *et al.* Spontaneous renal fornix rupture in pregnancy and the post partum period: a systematic review of outcomes and management. BMC Urol, 2020. 20: 116. https://pubmed.ncbi.nlm.nih.gov/32753038
- 417. Mokhmalji, H., *et al.* Percutaneous nephrostomy versus ureteral stents for diversion of hydronephrosis caused by stones: a prospective, randomized clinical trial. J Urol, 2001. 165: 1088. https://pubmed.ncbi.nlm.nih.gov/11257644
- 418. Tsai, Y.L., *et al.* Comparative study of conservative and surgical management for symptomatic moderate and severe hydronephrosis in pregnancy: a prospective randomized study. Acta Obstet Gynecol Scand, 2007. 86: 1047. https://pubmed.ncbi.nlm.nih.gov/17712643
- 419. Dai, J.C., *et al.* Nephrolithiasis in Pregnancy: Treating for Two. Urology, 2021. 151: 44. https://pubmed.ncbi.nlm.nih.gov/32866511
- 420. Mason, M.M., *et al.* A comparison of adverse pregnancy events between ureteral stents and percutaneous nephrostomy tubes in the treatment of nephrolithiasis during pregnancy: A propensity score-matched analysis of a large multi-institutional research network. World J Urol, 2023. 41: 1721. https://pubmed.ncbi.nlm.nih.gov/35909212
- 421. Ishii, H., *et al.* Current status of ureteroscopy for stone disease in pregnancy. Urolithiasis, 2014. 42: 1. https://pubmed.ncbi.nlm.nih.gov/24374899
- 422. Teleb, M., *et al.* Definitive ureteroscopy and intracorporeal lithotripsy in treatment of ureteral calculi during pregnancy. Arab J Urol, 2014. 12: 299. https://pubmed.ncbi.nlm.nih.gov/26019966
- 423. Johnson, E.B., et al. Obstetric complications of ureteroscopy during pregnancy. J Urol, 2012. 188: 151.
 - https://pubmed.ncbi.nlm.nih.gov/22591961
- 424. Ramachandra, M., *et al.* Safety and feasibility of percutaneous nephrolithotomy (PCNL) during pregnancy: A review of literature. Turk J Urol, 2020. 46: 89. https://pubmed.ncbi.nlm.nih.gov/32134719
- 425. Holmes, D.G., *et al.* Long-term complications related to the modified Indiana pouch. Urology, 2002. 60: 603.
 - https://pubmed.ncbi.nlm.nih.gov/12385916
- 426. Yang, W.J., *et al.* Long-term effects of ileal conduit urinary diversion on upper urinary tract in bladder cancer. Urology, 2006. 68: 324.
 - https://pubmed.ncbi.nlm.nih.gov/16904445
- 427. Assimos, D.G. Nephrolithiasis in patients with urinary diversion. J Urol, 1996. 155: 69. https://pubmed.ncbi.nlm.nih.gov/7490901
- 428. Cohen, T.D., *et al.* Long-term incidence and risks for recurrent stones following contemporary management of upper tract calculi in patients with a urinary diversion. J Urol, 1996. 155: 62. https://pubmed.ncbi.nlm.nih.gov/7490899
- 429. El-Assmy, A., *et al.* Extracorporeal shock wave lithotripsy of upper urinary tract calculi in patients with cystectomy and urinary diversion. Urology, 2005. 66: 510. https://pubmed.ncbi.nlm.nih.gov/16140067
- 430. Deliveliotis, C., *et al.* Shockwave lithotripsy for urinary stones in patients with urinary diversion after radical cystectomy. J Endourol, 2002. 16: 717. https://pubmed.ncbi.nlm.nih.gov/12542873
- 431. el-Nahas, A.R., *et al.* Percutaneous treatment of large upper tract stones after urinary diversion. Urology, 2006. 68: 500.
- https://pubmed.ncbi.nlm.nih.gov/16979745

 432.
 Ramachandra, M.N., et al. Challenges of Retrograde Ureteroscopy in Patients with Urinary Diversion: Outcomes and Lessons Learnt from a Systematic Review of Literature. Urol Int, 2018. 101: 249. https://pubmed.ncbi.nlm.nih.gov/29614503
- 433. Stein, J.P., *et al.* Complications of the afferent antireflux valve mechanism in the Kock ileal reservoir. J Urol, 1996. 155: 1579.
 - https://pubmed.ncbi.nlm.nih.gov/8627827
- 434. Matlaga, B.R., *et al.* Computerized tomography guided access for percutaneous nephrostolithotomy. J Urol, 2003. 170: 45.

435.	Hensle, T.W., et al. Preventing reservoir calculi after augmentation cystoplasty and continent urinary diversion: the influence of an irrigation protocol. BJU Int, 2004. 93: 585.
	https://pubmed.ncbi.nlm.nih.gov/15008735
436.	Raj, G.V., et al. The incidence of nephrolithiasis in patients with spinal neural tube defects. J Urol, 1999. 162: 1238.
	https://pubmed.ncbi.nlm.nih.gov/10458475
437.	Taskinen, S., <i>et al.</i> Additional surgery in patients with bladder augmentation. J Pediatr Urol, 2023. 19: 406 e1.
	https://pubmed.ncbi.nlm.nih.gov/37061366
438.	Gros, D.A., <i>et al.</i> Urolithiasis in spina bifida. Eur J Pediatr Surg, 1998. 8 Suppl 1: 68. https://pubmed.ncbi.nlm.nih.gov/9926338
439.	Shepard, C.L., et al. Urinary tract stone development in patients with myelodysplasia subjected to
409.	augmentation cystoplasty. Rev Urol, 2017. 19: 11. https://pubmed.ncbi.nlm.nih.gov/28522925
440.	Christman, M.S., et al. Morbidity and efficacy of ureteroscopic stone treatment in patients with
440.	neurogenic bladder. J Urol, 2013. 190: 1479.
	https://pubmed.ncbi.nlm.nih.gov/23454151
441.	Ganesan, C., et al. Kidney Stone Events after Kidney Transplant in the United States. Clin J Am Soc
	Nephrol, 2023. 18: 777.
	https://pubmed.ncbi.nlm.nih.gov/37071657
442.	Harper, J.M., et al. Risk factors for calculus formation in patients with renal transplants. Br J Urol, 1994. 74: 147.
	https://pubmed.ncbi.nlm.nih.gov/7921929
443.	Challacombe, B., <i>et al.</i> Multimodal management of urolithiasis in renal transplantation. BJU Int, 2005. 96: 385.
	https://pubmed.ncbi.nlm.nih.gov/16042735
444.	Rifaioglu, M.M., et al. Percutaneous management of stones in transplanted kidneys. Urology, 2008. 72: 508.
	https://pubmed.ncbi.nlm.nih.gov/18653217
445.	Gupta, M., et al. Treatment of stones associated with complex or anomalous renal anatomy. Urol Clin
	North Am, 2007. 34: 431.
	https://pubmed.ncbi.nlm.nih.gov/17678992
446.	Minon Cifuentes, J., <i>et al.</i> Percutaneous nephrolithotomy in transplanted kidney. Urology, 1991. 38: 232.
	https://pubmed.ncbi.nlm.nih.gov/1887537
447.	Wyatt, J., <i>et al.</i> Treatment outcomes for percutaneous nephrolithotomy in renal allografts. J Endourol, 2009. 23: 1821.
	https://pubmed.ncbi.nlm.nih.gov/19814697
448.	Lu, H.F., et al. Donor-gifted allograft urolithiasis: early percutaneous management. Urology, 2002. 59: 25.
4.40	https://pubmed.ncbi.nlm.nih.gov/11796274
449.	Del Pizzo, J.J., et al. Ureteroscopic evaluation in renal transplant recipients. J Endourol, 1998. 12:
	135. https://pubmed.pehi.plm.pib.gov/0607420
450	<u>https://pubmed.ncbi.nlm.nih.gov/9607439</u> Basiri, A., et al. Ureteroscopic management of urological complications after renal transplantation.
450.	Scand J Urol Nephrol, 2006. 40: 53.
	https://pubmed.ncbi.nlm.nih.gov/16452057
451.	Reeves, T., et al. Donor and post-transplant ureteroscopy for stone disease in patients with renal
401.	transplant: evidence from a systematic review. Curr Opin Urol, 2019. 29: 548.
	https://pubmed.ncbi.nlm.nih.gov/30855381
452.	Cerrato, C., et al. Shockwave Lithotripsy for De-Novo Urolithiasis after Kidney Transplantation: A
102.	Systematic Review of the Literature. J Clin Med, 2023. 12.
	https://pubmed.ncbi.nlm.nih.gov/37445423
453.	Garcia Rojo, E., et al. Real-world Global Outcomes of Retrograde Intrarenal Surgery in Anomalous
	Kidneys: A High Volume International Multicenter Study. Urology, 2022. 159: 41.
1 = 1	https://pubmed.ncbi.nlm.nih.gov/34715241
454.	Parkhomenko, E., et al. Percutaneous Management of Stone Containing Calyceal Diverticula:
	Associated Factors and Outcomes. J Urol, 2017. 198: 864. https://pubmed.ncbi.nlm.nih.gov/28483573

455.	Bas, O., <i>et al.</i> Management of calyceal diverticular calculi: a comparison of percutaneous nephrolithotomy and flexible ureterorenoscopy. Urolithiasis, 2015. 43: 155. <u>https://pubmed.ncbi.nlm.nih.gov/25249328</u>
456.	Gaur, D.D. Retroperitoneal endoscopic ureterolithotomy: our experience in 12 patients. J Endourol, 1993. 7: 501.
457.	https://pubmed.ncbi.nlm.nih.gov/8124346 Gaur, D.D., et al. Retroperitoneal laparoscopic pyelolithotomy. J Urol, 1994. 151: 927.
458.	https://pubmed.ncbi.nlm.nih.gov/8126827 Lavan, L., et al. Outcomes of ureteroscopy for stone disease in anomalous kidneys: a systematic review. World J Urol, 2020. 38: 1135.
459.	https://pubmed.ncbi.nlm.nih.gov/31101967 Chen, H., et al. No Wound for Stones <2 cm in Horseshoe Kidney: A Systematic Review of
	Comparative Studies. Urol Int, 2019. 103: 249. https://pubmed.ncbi.nlm.nih.gov/31096234
460.	Yi, X., <i>et al.</i> Comparison of the Efficacy and Safety of Extracorporeal Shock Wave Lithotripsy and Flexible Ureteroscopy for Treatment of Urolithiasis in Horseshoe Kidney Patients: A Systematic Review and Meta-Analysis. Front Surg, 2021. 8: 726233. https://pubmed.ncbi.nlm.nih.gov/34760915
461.	Salvi, M., et al. Active treatment of renal stones in pelvic ectopic kidney: systematic review of literature. Minerva Urol Nefrol, 2020. 72: 691.
462.	https://pubmed.ncbi.nlm.nih.gov/32298068 Skolarikos, A., et al. Ureteropelvic obstruction and renal stones: etiology and treatment. Urolithiasis, 2015. 43: 5.
463.	https://pubmed.ncbi.nlm.nih.gov/25362543 Ward, J.B., et al. Pediatric Urinary Stone Disease in the United States: The Urologic Diseases in America Project. Urology, 2019. 129: 180.
464.	https://pubmed.ncbi.nlm.nih.gov/31005657 Matlaga, B.R., <i>et al.</i> Epidemiologic insights into pediatric kidney stone disease. Urol Res, 2010. 38: 453.
465.	https://pubmed.ncbi.nlm.nih.gov/20967433 Alfandary, H., et al. Increasing Prevalence of Nephrolithiasis in Association with Increased Body Mass Index in Children: A Population Based Study. J Urol, 2018. 199: 1044. https://pubmed.ncbi.nlm.nih.gov/29061537
466.	Novak, T.E., et al. Sex prevalence of pediatric kidney stone disease in the United States: an epidemiologic investigation. Urology, 2009. 74: 104.
467.	<u>https://pubmed.ncbi.nlm.nih.gov/19428065</u> Bevill, M., <i>et al</i> . The Modern Metabolic Stone Evaluation in Children. Urology, 2017. 101: 15. <u>https://pubmed.ncbi.nlm.nih.gov/27838366</u>
468.	Kovacevic, L., <i>et al.</i> From hypercalciuria to hypocitraturia-a shifting trend in pediatric urolithiasis? J Urol, 2012. 188: 1623.
469.	https://pubmed.ncbi.nlm.nih.gov/22910255 Cambareri, G.M., et al. National multi-institutional cooperative on urolithiasis in children: Age is a significant predictor of urine abnormalities. J Pediatr Urol, 2015. 11: 218. https://pubmed.ncbi.nlm.nih.gov/26119451
470.	Braun, D.A., et al. Prevalence of Monogenic Causes in Pediatric Patients with Nephrolithiasis or Nephrocalcinosis. Clin J Am Soc Nephrol, 2016. 11: 664. https://pubmed.ncbi.nlm.nih.gov/26787776
471.	Kant, A.K., et al. Contributors of water intake in US children and adolescents: associations with dietary and meal characteristicsNational Health and Nutrition Examination Survey 2005-2006. Am J Clin Nutr, 2010. 92: 887.
472.	https://pubmed.ncbi.nlm.nih.gov/20685949 Cogswell, M.E., <i>et al.</i> Vital signs: sodium intake among U.S. school-aged children - 2009-2010. MMWR Morb Mortal Wkly Rep, 2014. 63: 789. https://pubmed.ncbi.nlm.nih.gov/25211544
473.	Clark, M.A., <i>et al.</i> Nutritional quality of the diets of US public school children and the role of the school meal programs. J Am Diet Assoc, 2009. 109: S44.
474.	https://pubmed.ncbi.nlm.nih.gov/19166672 Andrioli, V., et al. Infant nephrolithiasis and nephrocalcinosis: Natural history and predictors of surgical intervention. J Pediatr Urol, 2017. 13: 355 e1. https://pubmed.ncbi.nlm.nih.gov/28729176

475.	Sas, D.J., et al. Clinical, demographic, and laboratory characteristics of children with nephrolithiasis.
	Urolithiasis, 2016. 44: 241.
	https://pubmed.ncbi.nlm.nih.gov/26467033
476.	Telli, O., et al. What happens to asymptomatic lower pole kidney stones smaller than 10 mm in
	children during watchful waiting? Pediatr Nephrol, 2017. 32: 853.
	https://pubmed.ncbi.nlm.nih.gov/28070668
477.	Dos Santos, J., et al. Outcome Analysis of Asymptomatic Lower Pole Stones in Children. J Urol, 2016.
4//.	• • • •
	195: 1289.
470	https://pubmed.ncbi.nlm.nih.gov/26926554
478.	Dincel, N., et al. Are small residual stone fragments really insignificant in children? J Pediatr Surg,
	2013. 48: 840.
	https://pubmed.ncbi.nlm.nih.gov/23583144
479.	Barreto, L., et al. Medical and surgical interventions for the treatment of urinary stones in children.
	Cochrane Database Syst Rev, 2018. 6: CD010784.
	https://pubmed.ncbi.nlm.nih.gov/29859007
480.	Sun, F., et al. Meta-Analysis of the Safety and Efficacy of alpha-Adrenergic Blockers for Pediatric
	Urolithiasis in the Distal Ureter. Front Pediatr, 2022. 10: 809914.
	https://pubmed.ncbi.nlm.nih.gov/35498769
481.	Ziaeefar, P., et al. Medical Expulsive Therapy for Pediatric Ureteral Stones: A Meta-Analysis of
	Randomized Clinical Trials. J Clin Med, 2023. 12.
	https://pubmed.ncbi.nlm.nih.gov/36835945
482.	Lu, P., et al. The clinical efficacy of extracorporeal shock wave lithotripsy in pediatric urolithiasis: a
	systematic review and meta-analysis. Urolithiasis, 2015. 43: 199.
	https://pubmed.ncbi.nlm.nih.gov/25721456
483.	Dogan, H.S., et al. A new nomogram for prediction of outcome of pediatric shock-wave lithotripsy. J
	Pediatr Urol, 2015. 11: 84 e1.
	https://pubmed.ncbi.nlm.nih.gov/25812469
484.	Alsagheer, G., et al. Extracorporeal shock wave lithotripsy (ESWL) monotherapy in children: Predictors
	of successful outcome. J Pediatr Urol, 2017. 13: 515 e1.
	https://pubmed.ncbi.nlm.nih.gov/28457667
485.	Zeng, G., et al. Treatment of renal stones in infants: comparing extracorporeal shock wave lithotripsy
	and mini-percutaneous nephrolithotomy. Urol Res, 2012. 40: 599.
	https://pubmed.ncbi.nlm.nih.gov/22580634
486.	Badawy, A.A., et al. Extracorporeal shock wave lithotripsy as first line treatment for urinary tract
100.	stones in children: outcome of 500 cases. Int Urol Nephrol, 2012. 44: 661.
	https://pubmed.ncbi.nlm.nih.gov/22350835
487.	Jee, J.Y., et al. Efficacy of extracorporeal shock wave lithotripsy in pediatric and adolescent
-107.	urolithiasis. Korean J Urol, 2013. 54: 865.
	https://pubmed.ncbi.nlm.nih.gov/24363869
488.	Cevik, B., et al. Procedural sedation and analgesia for pediatric shock wave lithotripsy: a 10 year
400.	experience of single institution. Urolithiasis, 2018. 46: 363.
	https://pubmed.ncbi.nlm.nih.gov/28642966
100	Kumar, A., et al. A Single Center Experience Comparing Miniperc and Shockwave Lithotripsy for
489.	Treatment of Radiopaque 1-2 cm Lower Caliceal Renal Calculi in Children: A Prospective Randomized
	Study. J Endourol, 2015. 29: 805.
100	https://pubmed.ncbi.nlm.nih.gov/25633506
490.	Wang, H.H., et al. Shock wave lithotripsy vs ureteroscopy: variation in surgical management of kidney
	stones at freestanding children's hospitals. J Urol, 2012. 187: 1402.
101	https://pubmed.ncbi.nlm.nih.gov/22341283
491.	Jurkiewicz, B., et al. Ureterolithotripsy in a paediatric population: a single institution's experience.
	Urolithiasis, 2014. 42: 171.
10-	https://pubmed.ncbi.nlm.nih.gov/24368682
492.	Elsheemy, M.S., et al. Holmium: YAG laser ureteroscopic lithotripsy for ureteric calculi in children:
	predictive factors for complications and success. World J Urol, 2014. 32: 985.
	https://pubmed.ncbi.nlm.nih.gov/23979150
493.	Ishii, H., et al. Ureteroscopy for stone disease in the paediatric population: a systematic review. BJU
	Int, 2015. 115: 867.
	https://pubmed.ncbi.nlm.nih.gov/25203925

494.	Tanriverdi, O., <i>et al.</i> Comparison of ureteroscopic procedures with rigid and semirigid ureteroscopes in pediatric population: does the caliber of instrument matter? Pediatr Surg Int, 2010. 26: 733. <u>https://pubmed.ncbi.nlm.nih.gov/20521057</u>
495.	Dogan, H.S., <i>et al.</i> Factors affecting complication rates of ureteroscopic lithotripsy in children: results of multi-institutional retrospective analysis by Pediatric Stone Disease Study Group of Turkish Pediatric Urology Society. J Urol, 2011. 186: 1035. https://pubmed.ncbi.nlm.nih.gov/21784482
496.	Gokce, M.I., <i>et al.</i> Effect of Prestenting on Success and Complication Rates of Ureterorenoscopy in Pediatric Population. J Endourol, 2016. 30: 850. https://pubmed.ncbi.nlm.nih.gov/27189236
497.	Ellison, J.S., <i>et al.</i> Risk factors for repeat surgical intervention in pediatric nephrolithiasis: A Pediatric Health Information System database study. J Pediatr Urol, 2018. 14: 245 e1. <u>https://pubmed.ncbi.nlm.nih.gov/29580730</u>
498.	Unsal, A., et al. Retrograde intrarenal surgery in infants and preschool-age children. J Pediatr Surg, 2011. 46: 2195. https://pubmed.ncbi.nlm.nih.gov/22075358
499.	Erkurt, B., <i>et al.</i> Treatment of renal stones with flexible ureteroscopy in preschool age children. Urolithiasis, 2014. 42: 241. https://pubmed.ncbi.nlm.nih.gov/24374900
500.	Suliman, A., <i>et al.</i> Flexible ureterorenoscopy to treat upper urinary tract stones in children. Urolithiasis, 2020. 48: 57. https://pubmed.ncbi.nlm.nih.gov/30370467
501.	Xiao, J., <i>et al.</i> Treatment of upper urinary tract stones with flexible ureteroscopy in children. Can Urol Assoc J, 2019. 13: E78. https://pubmed.ncbi.nlm.nih.gov/30169147
502.	Tiryaki, T., <i>et al.</i> Ureteroscopy for treatment of ureteral stones in children: factors influencing the outcome. Urology, 2013. 81: 1047. https://pubmed.ncbi.nlm.nih.gov/23465154
503.	Lim, E.J., <i>et al.</i> Outcomes and lessons learnt from practice of retrograde intrarenal surgery (RIRS) in a paediatric setting of various age groups: a global study across 8 centres. World J Urol, 2022. 40: 1223. https://pubmed.ncbi.nlm.nih.gov/35129624
504.	Mokhless, I.A., et al. Retrograde intrarenal surgery monotherapy versus shock wave lithotripsy for stones 10 to 20 mm in preschool children: a prospective, randomized study. J Urol, 2014. 191: 1496. https://pubmed.ncbi.nlm.nih.gov/24679882
505.	Saad, K.S., <i>et al.</i> Percutaneous Nephrolithotomy vs Retrograde Intrarenal Surgery for Large Renal Stones in Pediatric Patients: A Randomized Controlled Trial. J Urol, 2015. 194: 1716. https://pubmed.ncbi.nlm.nih.gov/26165587
506.	Pelit, E.S., <i>et al.</i> Comparison of Mini-percutaneous Nephrolithotomy and Retrograde Intrarenal Surgery in Preschool-aged Children. Urology, 2017. 101: 21. https://pubmed.ncbi.nlm.nih.gov/27818164
507.	Bas, O., <i>et al.</i> Comparison of Retrograde Intrarenal Surgery and Micro-Percutaneous Nephrolithotomy in Moderately Sized Pediatric Kidney Stones. J Endourol, 2016. 30: 765. https://pubmed.ncbi.nlm.nih.gov/26983791
508.	Chen, Y., <i>et al.</i> Percutaneous nephrolithotomy versus retrograde intrarenal surgery for pediatric patients with upper urinary stones: a systematic review and meta-analysis. Urolithiasis, 2019. 47: 189.
509.	https://pubmed.ncbi.nlm.nih.gov/29368009 Cicekbilek, I., et al. Effect of percutaneous nephrolithotomy on renal functions in children: assessment by quantitative SPECT of (99m)Tc-DMSA uptake by the kidneys. Ren Fail, 2015. 37: 1118.
510.	https://pubmed.ncbi.nlm.nih.gov/26067745 Celik, H., et al. Comparison of the results of pediatric percutaneous nephrolithotomy with different sized instruments. Urolithiasis, 2017. 45: 203. https://pubmed.ncbi.nlm.nih.gov/27155829
511.	Dombrovskiy, V., <i>et al.</i> Percutaneous Nephrolithotomy in Children: Analysis of Nationwide Hospitalizations and Short-Term Outcomes for the United States, 2001-2014. J Endourol, 2018. 32: 912.

- 512. Senocak, C., *et al.* Predictive factors of bleeding among pediatric patients undergoing percutaneous nephrolithotomy. Urolithiasis, 2018. 46: 383. https://pubmed.ncbi.nlm.nih.gov/28702679
- 513. Jones, P., *et al.* Role of Minimally Invasive Percutaneous Nephrolithotomy Techniques-Micro and Ultra-Mini PCNL (<15F) in the Pediatric Population: A Systematic Review. J Endourol, 2017. 31: 816. https://pubmed.ncbi.nlm.nih.gov/28478724
- 514. Guven, S., *et al.* Percutaneous nephrolithotomy in children in different age groups: data from the Clinical Research Office of the Endourological Society (CROES) Percutaneous Nephrolithotomy Global Study. BJU Int, 2013. 111: 148.

515. Onal, B., *et al.* Factors affecting complication rates of percutaneous nephrolithotomy in children: results of a multi-institutional retrospective analysis by the Turkish pediatric urology society. J Urol, 2014. 191: 777.

https://pubmed.ncbi.nlm.nih.gov/24095906

- 516. Aghamir, S.M., et al. Comparing Bleeding Complications of Double and Single Access Totally Tubeless PCNL: Is It Safe to Obtain More Accesses? Urol Int, 2016. 96: 73. https://pubmed.ncbi.nlm.nih.gov/26021886
- 517. Iqbal, N., *et al.* Comparison of outcomes of tubed versus tubeless percutaneous nephrolithotomy in children: A single center study. Turk J Urol, 2018. 44: 56.

https://pubmed.ncbi.nlm.nih.gov/29484229

518. Samad, L., *et al.* Does percutaneous nephrolithotomy in children cause significant renal scarring? J Pediatr Urol, 2007. 3: 36.

https://pubmed.ncbi.nlm.nih.gov/18947696

- 519. Modi, P.K., et al. Pediatric hospitalizations for upper urinary tract calculi: Epidemiological and treatment trends in the United States, 2001-2014. J Pediatr Urol, 2018. 14: 13 e1. https://pubmed.ncbi.nlm.nih.gov/28966022
- 520. Agrawal, V., et al. Laparoscopic management of pediatric renal and ureteric stones. J Pediatr Urol, 2013. 9: 230.

https://pubmed.ncbi.nlm.nih.gov/22498008

- 521. Srivastava, A., *et al.* Laparoscopic Ureterolithotomy in Children: With and Without Stent Initial Tertiary Care Center Experience with More Than 1-Year Follow-Up. Eur J Pediatr Surg, 2017. 27: 150. https://pubmed.ncbi.nlm.nih.gov/26878339
- 522. Lee, R.S., *et al.* Early results of robot assisted laparoscopic lithotomy in adolescents. J Urol, 2007. 177: 2306.
 - https://pubmed.ncbi.nlm.nih.gov/17509345
- 523. Dai, J.C., *et al.* National Trends in CT Utilization and Estimated CT-related Radiation Exposure in the Evaluation and Follow-up of Stone Patients. Urology, 2019. 133: 50. <u>https://pubmed.ncbi.nlm.nih.gov/31404583</u>
- 524. Vassileva, J., *et al.* Radiation exposure of patients during endourological procedures: IAEA-SEGUR study. J Radiol Prot, 2020. 40.
- https://pubmed.ncbi.nlm.nih.gov/33086202
- 525. Yecies, T., *et al.* Identifying and managing the risks of medical ionizing radiation in endourology. Can J Urol, 2018. 25: 9154.

https://pubmed.ncbi.nlm.nih.gov/29524969

526. Jindal, T. The risk of radiation exposure to assisting staff in urological procedures: a literature review. Urol Nurs, 2013. 33: 136.

https://pubmed.ncbi.nlm.nih.gov/23930446

527. Vassileva, J., et al. Radiation Exposure of Surgical Team During Endourological Procedures: International Atomic Energy Agency-South-Eastern European Group for Urolithiasis Research Study. J Endourol, 2021. 35: 574.

https://pubmed.ncbi.nlm.nih.gov/32791856

528. Pierce, D.A., *et al.* Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Res, 2000. 154: 178.

https://pubmed.ncbi.nlm.nih.gov/10931690

529. Preston, D.L., *et al.* Solid cancer incidence in atomic bomb survivors: 1958-1998. Radiat Res, 2007. 168: 1.

https://pubmed.ncbi.nlm.nih.gov/17722996

530. Pearce, M.S., *et al.* Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet, 2012. 380: 499. https://pubmed.ncbi.nlm.nih.gov/22681860

F01	Mathema ID, at al. Openan risk in (20,000 popula support to computed tomography openation
531.	Mathews, J.D., et al. Cancer risk in 680,000 people exposed to computed tomography scans in abildhand and determined by the study of 11 million Australians, DML 2010, 246 (2020)
	childhood or adolescence: data linkage study of 11 million Australians. BMJ, 2013. 346: f2360.
500	https://pubmed.ncbi.nlm.nih.gov/23694687
532.	Berrington de Gonzalez, A., et al. Projected cancer risks from computed tomographic scans
	performed in the United States in 2007. Arch Intern Med, 2009. 169: 2071.
500	https://pubmed.ncbi.nlm.nih.gov/20008689
533.	Brenner, D.J., et al. Computed tomographyan increasing source of radiation exposure. N Engl J Med,
	2007. 357: 2277.
	https://pubmed.ncbi.nlm.nih.gov/18046031
534.	Wrixon, A.D. New ICRP recommendations. J Radiol Prot, 2008. 28: 161.
	https://pubmed.ncbi.nlm.nih.gov/18495983
535.	Kim, C.H., et al. Are Urologists Performing Semi-rigid Ureteroscopic Lithotripsy Safe From Radiation
	Exposure? A Guidance to Reduce the Radiation Dose. Urology, 2016. 95: 54.
50.6	https://pubmed.ncbi.nlm.nih.gov/27289024
536.	Singh, V., et al. Prospective randomized comparison between fluoroscopy-guided ureteroscopy
	versus ureteroscopy with real-time ultrasonography for the management of ureteral stones. Urol Ann,
	2016. 8: 418.
507	https://pubmed.ncbi.nlm.nih.gov/28057984
537.	Mohey, A., et al. Fluoroless-ureteroscopy for definitive management of distal ureteral calculi:
	randomized controlled trial. Can J Urol, 2018. 25: 9205.
500	https://pubmed.ncbi.nlm.nih.gov/29524976
538.	Parks, J.H., et al. A single 24-hour urine collection is inadequate for the medical evaluation of
	nephrolithiasis. J Urol, 2002. 167: 1607.
539.	https://pubmed.ncbi.nlm.nih.gov/11912373 Nayan, M., et al. Variations between two 24-hour urine collections in patients presenting to a tertiary
559.	stone clinic. Can Urol Assoc J, 2012. 6: 30.
	https://pubmed.ncbi.nlm.nih.gov/22396364
540.	Cameron, M., et al. The diurnal variation in urine acidification differs between normal individuals and
540.	uric acid stone formers. Kidney Int, 2012. 81: 1123.
	https://pubmed.ncbi.nlm.nih.gov/22297671
541.	Bobulescu, I.A., et al. Net Acid Excretion and Urinary Organic Anions in Idiopathic Uric Acid
• • • •	Nephrolithiasis. Clin J Am Soc Nephrol, 2019. 14: 411.
	https://pubmed.ncbi.nlm.nih.gov/30745301
542.	Cameron, M.A., <i>et al</i> . Uric acid nephrolithiasis. Urol Clin North Am, 2007. 34: 335.
	https://pubmed.ncbi.nlm.nih.gov/17678984
543.	Ferraz, R.R., et al. Preservation of urine samples for metabolic evaluation of stone-forming patients.
	Urol Res, 2006. 34: 329.
	https://pubmed.ncbi.nlm.nih.gov/16896690
544.	Capolongo, G., et al. Fasting versus 24-h urine pH in the evaluation of nephrolithiasis. Urol Res, 2011.
	39: 367.
	https://pubmed.ncbi.nlm.nih.gov/21336574
545.	Gambaro, G., et al. Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its
	systemic manifestations: a consensus statement. J Nephrol, 2016. 29: 715.
	https://pubmed.ncbi.nlm.nih.gov/27456839
546.	Porowski, T., et al. Assessment of lithogenic risk in children based on a morning spot urine sample. J
	Urol, 2010. 184: 2103.
	https://pubmed.ncbi.nlm.nih.gov/20850811
547.	Tiselius, H.G. Metabolic evaluation and therapy. Curr Opin Urol, 2000. 10: 545.
	https://pubmed.ncbi.nlm.nih.gov/11148723
548.	Norman, R.W., et al. When should patients with symptomatic urinary stone disease be evaluated
	metabolically? J Urol, 1984. 132: 1137.
	https://pubmed.ncbi.nlm.nih.gov/6502804
549.	D., A., Urine evaluation (in: Evaluation of the stone former), in 2ND International Consultation on
	Stone Disease, H.M. Assimos D. Chew B, Hautmann R, Holmes R, Williams J, Wolf JS, Editor. 2007,
	Health Publications.
550.	Tiselius, H.G. Standardized estimate of the ion activity product of calcium oxalate in urine from renal
	stone formers. Eur Urol, 1989. 16: 48.

551. Ackermann, D., et al. Use of the computer program EQUIL to estimate pH in model solutions and human urine. Urol Res, 1989. 17: 157. https://pubmed.ncbi.nlm.nih.gov/2749945 552. Kavanagh, J.P., et al. Why does the Bonn Risk Index discriminate between calcium oxalate stone formers and healthy controls? J Urol, 2006. 175: 766. https://pubmed.ncbi.nlm.nih.gov/16407047 553. Rodgers AL, A.-H.S., Jackson GE., JESS: What can it teach us?, in Proceedings of Renal Stone Disease 1st Annual International Urolithiasis Research Symposium, 2-3 November 2006., J.L.a.J.W. AP Evan, Jr, Editor. 2007, American Institute of Physics: Melville, New York 554. Sakhaee, K. Epidemiology and clinical pathophysiology of uric acid kidney stones. J Nephrol, 2014. 27:241. https://pubmed.ncbi.nlm.nih.gov/24497296 Hoppe, B., et al. Diagnostic examination of the child with urolithiasis or nephrocalcinosis. Pediatr 555. Nephrol, 2010. 25: 403. https://pubmed.ncbi.nlm.nih.gov/19104842 Sarica, K., et al. The effect of calcium channel blockers on stone regrowth and recurrence after shock 556. wave lithotripsy. Urol Res, 2006. 34: 184. https://pubmed.ncbi.nlm.nih.gov/16463053 557. Fink, H.A., et al. Medical management to prevent recurrent nephrolithiasis in adults: a systematic review for an American College of Physicians Clinical Guideline. Ann Intern Med, 2013. 158: 535. https://pubmed.ncbi.nlm.nih.gov/23546565 558. Borghi, L., et al. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study. J Urol, 1996. 155: 839. https://pubmed.ncbi.nlm.nih.gov/8583588 559. Bao, Y., et al. Water for preventing urinary stones. Cochrane Database Syst Rev, 2012: CD004292. https://pubmed.ncbi.nlm.nih.gov/22696340 560. Ferraro, P.M., et al. Effect of water composition and timing of ingestion on urinary lithogenic profile in healthy volunteers: a randomized crossover trial. J Nephrol, 2021. 34: 875. https://pubmed.ncbi.nlm.nih.gov/32514990 Siener, R., et al. Dietary risk factors for hyperoxaluria in calcium oxalate stone formers. Kidney Int, 561. 2003. 63: 1037. https://pubmed.ncbi.nlm.nih.gov/12631085 562. Barghouthy, Y., et al. Role of Citrus Fruit Juices in Prevention of Kidney Stone Disease (KSD): A Narrative Review. Nutrients, 2021. 13. https://pubmed.ncbi.nlm.nih.gov/34836376 563. Wabner, C.L., et al. Effect of orange juice consumption on urinary stone risk factors. J Urol, 1993. 149: 1405. https://pubmed.ncbi.nlm.nih.gov/8501777 564. Gettman, M.T., et al. Effect of cranberry juice consumption on urinary stone risk factors. J Urol, 2005. 174: 590. https://pubmed.ncbi.nlm.nih.gov/16006907 Shuster, J., et al. Soft drink consumption and urinary stone recurrence: a randomized prevention trial. 565. J Clin Epidemiol, 1992. 45: 911. https://pubmed.ncbi.nlm.nih.gov/1624973 Ferraro, P.M., et al. Soda and other beverages and the risk of kidney stones. Clin J Am Soc Nephrol, 566. 2013. 8: 1389. https://pubmed.ncbi.nlm.nih.gov/23676355 Barghouthy, Y., et al. Tea and coffee consumption and the risk of urinary stones-a systematic review 567. of the epidemiological data. World J Urol, 2021. 39: 2895. https://pubmed.ncbi.nlm.nih.gov/33458786 Kocvara, R., et al. A prospective study of nonmedical prophylaxis after a first kidney stone. BJU Int, 568. 1999. 84: 393. https://pubmed.ncbi.nlm.nih.gov/10468751 569. Hess, B., et al. Effects of a 'common sense diet' on urinary composition and supersaturation in patients with idiopathic calcium urolithiasis. Eur Urol, 1999. 36: 136. https://pubmed.ncbi.nlm.nih.gov/10420035 570. Barghouthy, Y., et al. The Relationship between Modern Fad Diets and Kidney Stone Disease: A Systematic Review of Literature. Nutrients, 2021. 13.

- 571. Ebisuno, S., *et al.* Results of long-term rice bran treatment on stone recurrence in hypercalciuric patients. Br J Urol, 1991. 67: 237. https://pubmed.ncbi.nlm.nih.gov/1902388
- 572. Hiatt, R.A., *et al.* Randomized controlled trial of a low animal protein, high fiber diet in the prevention of recurrent calcium oxalate kidney stones. Am J Epidemiol, 1996. 144: 25. https://pubmed.ncbi.nlm.nih.gov/8659482
- 573. Dussol, B., *et al.* A randomized trial of low-animal-protein or high-fiber diets for secondary prevention of calcium nephrolithiasis. Nephron Clin Pract, 2008. 110: c185. https://pubmed.ncbi.nlm.nih.gov/18957869
- 574. Turney, B.W., *et al.* Diet and risk of kidney stones in the Oxford cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur J Epidemiol, 2014. 29: 363. <u>https://pubmed.ncbi.nlm.nih.gov/24752465</u>
- 575. Asplin, J.R. The management of patients with enteric hyperoxaluria. Urolithiasis, 2016. 44: 33. https://pubmed.ncbi.nlm.nih.gov/26645872
- 576. Ferraro, P.M., *et al.* Total, Dietary, and Supplemental Vitamin C Intake and Risk of Incident Kidney Stones. Am J Kidney Dis, 2016. 67: 400.
 - https://pubmed.ncbi.nlm.nih.gov/26463139
- 577. Fink, H.A., *et al.* Diet, fluid, or supplements for secondary prevention of nephrolithiasis: a systematic review and meta-analysis of randomized trials. Eur Urol, 2009. 56: 72. https://pubmed.ncbi.nlm.nih.gov/19321253
- 578. Borghi, L., *et al.* Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med, 2002. 346: 77.
- https://pubmed.ncbi.nlm.nih.gov/11784873579.Curhan, G.C., et al. Comparison of dietary calcium with supplemental calcium and other nutrients as
factors affecting the risk for kidney stones in women. Ann Intern Med, 1997. 126: 497.
https://pubmed.ncbi.nlm.nih.gov/9092314
- 580. von Unruh, G.E., et al. Dependence of oxalate absorption on the daily calcium intake. J Am Soc Nephrol, 2004. 15: 1567.
 - https://pubmed.ncbi.nlm.nih.gov/15153567
- 581. Harris, S.S., et al. Effects of Hydration and Calcium Supplementation on Urine Calcium Concentration in Healthy Postmenopausal Women. J Am Coll Nutr, 2015. 34: 340. https://pubmed.ncbi.nlm.nih.gov/25856469
- 582. B., E., Hyperuricosuric calcium stone disease, in Kidney Stones: Medical and Surgical Management, F.M. Coe FL, Pak CYC, Parks JH, Preminger GM, Editor. 1996, Lippincott-Raven: Philadelphia.
- 583. Coe, F.L. Hyperuricosuric calcium oxalate nephrolithiasis. Adv Exp Med Biol, 1980. 128: 439. https://pubmed.ncbi.nlm.nih.gov/7424690
- 584. Siener, R., *et al.* The role of overweight and obesity in calcium oxalate stone formation. Obes Res, 2004. 12: 106.
- https://pubmed.ncbi.nlm.nih.gov/14742848585.Geraghty, R., et al. Does chronic hyperglycaemia increase the risk of kidney stone disease? results
from a systematic review and meta-analysis. BMJ Open, 2020. 10: e032094.
- https://pubmed.ncbi.nlm.nih.gov/31959605
 586. Chang, C.W., et al. Metabolic Syndrome Increases the Risk of Kidney Stone Disease: A Cross-Sectional and Longitudinal Cohort Study. J Pers Med, 2021. 11. https://pubmed.ncbi.nlm.nih.gov/34834506
- 587. Pearle, M.S., *et al.*, Medical management of urolithiasis. 2nd International consultation on Stone Disease, ed. K.S. Denstedt J. 2008.
- 588. Barcelo, P., *et al.* Randomized double-blind study of potassium citrate in idiopathic hypocitraturic calcium nephrolithiasis. J Urol, 1993. 150: 1761. https://pubmed.ncbi.nlm.nih.gov/8230497
- 589. Hofbauer, J., *et al.* Alkali citrate prophylaxis in idiopathic recurrent calcium oxalate urolithiasis--a prospective randomized study. Br J Urol, 1994. 73: 362. https://pubmed.ncbi.nlm.nih.gov/8199822
- 590. Ettinger, B., *et al.* Potassium-magnesium citrate is an effective prophylaxis against recurrent calcium oxalate nephrolithiasis. J Urol, 1997. 158: 2069. https://pubmed.ncbi.nlm.nih.gov/9366314
- 591. Lojanapiwat, B., et al. Alkaline citrate reduces stone recurrence and regrowth after shockwave lithotripsy and percutaneous nephrolithotomy. Int Braz J Urol, 2011. 37: 611. https://pubmed.ncbi.nlm.nih.gov/22099273

592.	Phillips, R., <i>et al.</i> Citrate salts for preventing and treating calcium containing kidney stones in adults. Cochrane Database Syst Rev, 2015. 2015: CD010057.
	https://pubmed.ncbi.nlm.nih.gov/26439475
593.	Favus, M.J., et al. The effects of allopurinol treatment on stone formation on hyperuricosuric calcium
	oxalate stone-formers. Scand J Urol Nephrol Suppl, 1980. 53: 265.
	https://pubmed.ncbi.nlm.nih.gov/6938003
594.	Ettinger, B., et al. Randomized trial of allopurinol in the prevention of calcium oxalate calculi. N Engl J
	Med, 1986. 315: 1386.
	https://pubmed.ncbi.nlm.nih.gov/3534570
595.	Smith, M.J. Placebo versus allopurinol for renal calculi. J Urol, 1977. 117: 690.
	https://pubmed.ncbi.nlm.nih.gov/875139
596.	Pearle, M.S., et al. Meta-analysis of randomized trials for medical prevention of calcium oxalate
	nephrolithiasis. J Endourol, 1999. 13: 679.
507	https://pubmed.ncbi.nlm.nih.gov/10608521
597.	Gupta, M., et al. Prospective Randomized Evaluation of Idiopathic Hyperoxaluria Treatments. J Endourol, 2021. 35: 1844.
	https://pubmed.ncbi.nlm.nih.gov/34254834
598.	Cohen, T.D., et al. Clinical effect of captopril on the formation and growth of cystine calculi. J Urol,
0.00.	1995. 154: 164.
	https://pubmed.ncbi.nlm.nih.gov/7776415
599.	Coulthard, M.G., <i>et al.</i> The treatment of cystinuria with captopril. Am J Kidney Dis, 1995. 25: 661.
	https://pubmed.ncbi.nlm.nih.gov/7702068
600.	Goldfarb, D.S., et al. Randomized controlled trial of febuxostat versus allopurinol or placebo in
	individuals with higher urinary uric acid excretion and calcium stones. Clin J Am Soc Nephrol, 2013.
	8: 1960.
	https://pubmed.ncbi.nlm.nih.gov/23929928
601.	Nouvenne, A., et al. New pharmacologic approach to patients with idiopathic calcium nephrolithiasis
	and high uricosuria: Febuxostat vs allopurinol. A pilot study. European Journal of Internal Medicine,
	2013. 24: e64.
	https://www.ejinme.com/article/S0953-6205(13)00364-6/fulltext
602.	Jarrar, K., <i>et al</i> . Struvite stones: long term follow up under metaphylaxis. Ann Urol (Paris), 1996. 30: 112.
	https://pubmed.ncbi.nlm.nih.gov/8766146
603.	Ettinger, B., et al. Chlorthalidone reduces calcium oxalate calculous recurrence but magnesium
	hydroxide does not. J Urol, 1988. 139: 679.
604	https://pubmed.ncbi.nlm.nih.gov/3280829
604.	Prien, E.L., Sr., <i>et al</i> . Magnesium oxide-pyridoxine therapy for recurrent calcium oxalate calculi. J Urol, 1974. 112: 509.
	https://pubmed.ncbi.nlm.nih.gov/4414543
605.	Pinheiro, V.B., et al. The effect of sodium bicarbonate upon urinary citrate excretion in calcium stone
	formers. Urology, 2013. 82: 33.
606	https://pubmed.ncbi.nlm.nih.gov/23602798
606.	Hoppe, B., <i>et al</i> . The primary hyperoxalurias. Kidney Int, 2009. 75: 1264. <u>https://pubmed.ncbi.nlm.nih.gov/19225556</u>
607.	Madore, F., <i>et al.</i> Nephrolithiasis and risk of hypertension. Am J Hypertens, 1998. 11: 46.
007.	https://pubmed.ncbi.nlm.nih.gov/9504449
608.	Madore, F., <i>et al.</i> Nephrolithiasis and risk of hypertension in women. Am J Kidney Dis, 1998. 32: 802.
000.	https://pubmed.ncbi.nlm.nih.gov/9820450
609.	Borghi, L., et al. Randomized prospective study of a nonthiazide diuretic, indapamide, in preventing
	calcium stone recurrences. J Cardiovasc Pharmacol, 1993. 22 Suppl 6: S78.
	https://pubmed.ncbi.nlm.nih.gov/7508066
610.	Brocks, P., et al. Do thiazides prevent recurrent idiopathic renal calcium stones? Lancet, 1981. 2: 124.
	https://pubmed.ncbi.nlm.nih.gov/6113485
611.	Mortensen, J.T., et al. Thiazides in the prophylactic treatment of recurrent idiopathic kidney stones.
	Int Urol Nephrol, 1986. 18: 265.
	https://pubmed.ncbi.nlm.nih.gov/3533825
612.	Laerum, E., et al. Thiazide prophylaxis of urolithiasis. A double-blind study in general practice. Acta
	Med Scand, 1984. 215: 383.
	<u>https://pubmed.ncbi.nlm.nih.gov/6375276</u>

- 613. Ohkawa, M., et al. Thiazide treatment for calcium urolithiasis in patients with idiopathic hypercalciuria. Br J Urol, 1992. 69: 571. https://pubmed.ncbi.nlm.nih.gov/1638340
- 614. Scholz, D., *et al.* Double-blind study with thiazide in recurrent calcium lithiasis. J Urol, 1982. 128: 903. https://pubmed.ncbi.nlm.nih.gov/7176047
- 615. Nicar, M.J., *et al.* Use of potassium citrate as potassium supplement during thiazide therapy of calcium nephrolithiasis. J Urol, 1984. 131: 430. https://pubmed.ncbi.nlm.nih.gov/6699979
- 616. Fernandez-Rodriguez, A., *et al.* [The role of thiazides in the prophylaxis of recurrent calcium lithiasis]. Actas Urol Esp, 2006. 30: 305.
 - https://pubmed.ncbi.nlm.nih.gov/16749588
- 617. Dolin, D.J., *et al.* Effect of cystine-binding thiol drugs on urinary cystine capacity in patients with cystinuria. J Endourol, 2005. 19: 429.
 - https://pubmed.ncbi.nlm.nih.gov/15865542
- 618. Chow, G.K., *et al.* Medical treatment of cystinuria: results of contemporary clinical practice. J Urol, 1996. 156: 1576.
 - https://pubmed.ncbi.nlm.nih.gov/8863541
- 619. Pak, C.Y., et al. Management of cystine nephrolithiasis with alpha-mercaptopropionylglycine. J Urol, 1986. 136: 1003.
 - https://pubmed.ncbi.nlm.nih.gov/3534301
- 620. Tekin, A., *et al.* Cystine calculi in children: the results of a metabolic evaluation and response to medical therapy. J Urol, 2001. 165: 2328.
- https://pubmed.ncbi.nlm.nih.gov/11371943621.Pedersen, S.A., et al. Hydrochlorothiazide use and risk of nonmelanoma skin cancer: A nationwide
case-control study from Denmark. J Am Acad Dermatol, 2018. 78: 673.
- https://pubmed.ncbi.nlm.nih.gov/29217346
 622. Pottegard, A., *et al.* Hydrochlorothiazide use is strongly associated with risk of lip cancer. J Intern Med, 2017. 282: 322.
 - https://pubmed.ncbi.nlm.nih.gov/28480532
- 623. Pottegard, A., *et al.* Association of Hydrochlorothiazide Use and Risk of Malignant Melanoma. JAMA Intern Med, 2018. 178: 1120.
 - https://pubmed.ncbi.nlm.nih.gov/29813157
- 624. Worcester, E.M., *et al.* New insights into the pathogenesis of idiopathic hypercalciuria. Semin Nephrol, 2008. 28: 120.
 - https://pubmed.ncbi.nlm.nih.gov/18359393
- 625. Curhan, G.C., *et al.* A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med, 1993. 328: 833. https://pubmed.ncbi.nlm.nih.gov/8441427
- 626. Wolf, H., *et al.* Do thiazides prevent recurrent idiopathic renal calcium oxalate stones? Proc Eur Dial Transplant Assoc, 1983. 20: 477.
- https://pubmed.ncbi.nlm.nih.gov/6361755 627. Johansson, G., *et al.* Effects of magnesium hydroxide in renal stone disease. J Am Coll Nutr, 1982. 1: 179.
 - https://pubmed.ncbi.nlm.nih.gov/6764473
- 628. Khan, S.R., *et al.* Magnesium oxide administration and prevention of calcium oxalate nephrolithiasis. J Urol, 1993. 149: 412.
 - https://pubmed.ncbi.nlm.nih.gov/8426432
- 629. Solak, V., *et al.* Potassium citrate vs. hydrochlorothiazide to reduce urinary calcium excretion in calcium oxalate stone patients with hypercalciuria: a prospective randomized study. Int Urol Nephrol, 2021. 53: 1791.
 - https://pubmed.ncbi.nlm.nih.gov/33904027
- 630. Dhayat, N.A., *et al.* Hydrochlorothiazide and Prevention of Kidney-Stone Recurrence. N Engl J Med, 2023. 388: 781.
 - https://pubmed.ncbi.nlm.nih.gov/36856614
- 631. Dhayat, N.A., et al. Efficacy of standard and low dose hydrochlorothiazide in the recurrence prevention of calcium nephrolithiasis (NOSTONE trial): protocol for a randomized double-blind placebo-controlled trial. BMC Nephrol, 2018. 19: 349. https://pubmed.ncbi.nlm.nih.gov/30526528

- 632. Hesse, A., *et al.* Causes of phosphate stone formation and the importance of metaphylaxis by urinary acidification: a review. World J Urol, 1999. 17: 308. https://pubmed.ncbi.nlm.nih.gov/10552150
- 633. Silverberg, S.J., *et al.* A 10-year prospective study of primary hyperparathyroidism with or without parathyroid surgery. N Engl J Med, 1999. 341: 1249. https://pubmed.ncbi.nlm.nih.gov/10528034
- 634. Mollerup, C.L., *et al.* Risk of renal stone events in primary hyperparathyroidism before and after parathyroid surgery: controlled retrospective follow up study. BMJ, 2002. 325: 807. https://pubmed.ncbi.nlm.nih.gov/12376441
- 635. Evan, A.E., *et al.* Histopathology and surgical anatomy of patients with primary hyperparathyroidism and calcium phosphate stones. Kidney Int, 2008. 74: 223. https://pubmed.ncbi.nlm.nih.gov/18449170
- 636. Verheyen, N., *et al.* Cinacalcet hydrochloride for the treatment of hyperparathyroidism. Expert Opin Pharmacother, 2013. 14: 793.

- 637. Rizzato, G., *et al.* Nephrolithiasis as a presenting feature of chronic sarcoidosis: a prospective study. Sarcoidosis Vasc Diffuse Lung Dis, 1996. 13: 167. https://pubmed.ncbi.nlm.nih.gov/8893387
- 638. Garrelfs, S.F., *et al.* Lumasiran, an RNAi Therapeutic for Primary Hyperoxaluria Type 1. N Engl J Med, 2021. 384: 1216.

https://pubmed.ncbi.nlm.nih.gov/33789010

- 639. Groothoff, J.W., et al. Clinical practice recommendations for primary hyperoxaluria: an expert consensus statement from ERKNet and OxalEurope. Nat Rev Nephrol, 2023. 19: 194. https://pubmed.ncbi.nlm.nih.gov/36604599
- 640. Takei, K., *et al.* Oral calcium supplement decreases urinary oxalate excretion in patients with enteric hyperoxaluria. Urol Int, 1998. 61: 192.

https://pubmed.ncbi.nlm.nih.gov/9933846

641. Hoppe, B., *et al.* Diagnostic and therapeutic approaches in patients with secondary hyperoxaluria. Front Biosci, 2003. 8: e437.

https://pubmed.ncbi.nlm.nih.gov/12957811

- 642. Prezioso, D., *et al.* Dietary treatment of urinary risk factors for renal stone formation. A review of CLU Working Group. Arch Ital Urol Androl, 2015. 87: 105. https://pubmed.ncbi.nlm.nih.gov/26150027
- 643. Domrongkitchaiporn, S., *et al.* Dosage of potassium citrate in the correction of urinary abnormalities in pediatric distal renal tubular acidosis patients. Am J Kidney Dis, 2002. 39: 383. https://pubmed.ncbi.nlm.nih.gov/11840381
- 644. AP., M. Genetic renal abnormalities. Medicine, 2007. 35: 386.
- https://www.sciencedirect.com/science/article/pii/S1357303907001090
- 645. Sromicki, J., *et al.* Prospective long-term evaluation of incomplete distal renal tubular acidosis in idiopathic calcium nephrolithiasis diagnosed by low-dose NH(4)CL loading gender prevalences and impact of alkali treatment. J Nephrol, 2022. 35: 1619.
- https://pubmed.ncbi.nlm.nih.gov/34973150
 646. Dhayat, N.A., et al. Furosemide/Fludrocortisone Test and Clinical Parameters to Diagnose Incomplete Distal Renal Tubular Acidosis in Kidney Stone Formers. Clin J Am Soc Nephrol, 2017. 12: 1507. https://pubmed.ncbi.nlm.nih.gov/28775126
- 647. Oliveira, B., *et al.* Genetic, pathophysiological, and clinical aspects of nephrocalcinosis. Am J Physiol Renal Physiol, 2016. 311: F1243.
 - https://pubmed.ncbi.nlm.nih.gov/27605580
- 648. Mandel, N.S., *et al.* Urinary tract stone disease in the United States veteran population. II. Geographical analysis of variations in composition. J Urol, 1989. 142: 1516. <u>https://pubmed.ncbi.nlm.nih.gov/2585627</u>
- 649. Kim, S., *et al.* Development of Nephrolithiasis in Asymptomatic Hyperuricemia: A Cohort Study. Am J Kidney Dis, 2017. 70: 173.

- 650. Millman, S., et al. Pathogenesis and clinical course of mixed calcium oxalate and uric acid nephrolithiasis. Kidney Int, 1982. 22: 366.
- https://pubmed.ncbi.nlm.nih.gov/7176335
 651. Pak, C.Y., et al. Biochemical distinction between hyperuricosuric calcium urolithiasis and gouty diathesis. Urology, 2002. 60: 789. https://pubmed.ncbi.nlm.nih.gov/12429297

652.	Chou, Y.H., et al. Clinical study of ammonium acid urate urolithiasis. Kaohsiung J Med Sci, 2012. 28: 259.
	https://pubmed.ncbi.nlm.nih.gov/22531304
653.	Wagner, C.A., et al. Urinary pH and stone formation. J Nephrol, 2010. 23 Suppl 16: S165.
	https://pubmed.ncbi.nlm.nih.gov/21170875
654.	Coe, F.L., <i>et al.</i> Kidney stone disease. J Clin Invest, 2005. 115: 2598.
	https://pubmed.ncbi.nlm.nih.gov/16200192
655.	Miano, R., et al. Stones and urinary tract infections. Urol Int, 2007. 79 Suppl 1: 32.
	https://pubmed.ncbi.nlm.nih.gov/17726350
656.	Rodman JS, S.E., Lopez ML., Diagnosis and treatment of uric acid calculi., in Kidney Stones. Medical
	and Surgical Management, F.M. Coe FL, Pak CYC, Parks JH, Preminger GM., Editor. 1996, Lippincott-
	Raven: Philadelphia.
657.	Low, R.K., et al. Uric acid-related nephrolithiasis. Urol Clin North Am, 1997. 24: 135.
	https://pubmed.ncbi.nlm.nih.gov/9048857
658.	Shekarriz, B., et al. Uric acid nephrolithiasis: current concepts and controversies. J Urol, 2002. 168:
	1307.
	https://pubmed.ncbi.nlm.nih.gov/12352383
659.	Wilcox, W.R., et al. Solubility of uric acid and monosodium urate. Med Biol Eng, 1972. 10: 522.
	https://pubmed.ncbi.nlm.nih.gov/5074854
660.	Mattle, D., et al. Preventive treatment of nephrolithiasis with alkali citratea critical review. Urol Res,
	2005. 33: 73.
	https://pubmed.ncbi.nlm.nih.gov/15875173
661.	Marchini, G.S., et al. Gout, stone composition and urinary stone risk: a matched case comparative
	study. J Urol, 2013. 189: 1334.
(())	https://pubmed.ncbi.nlm.nih.gov/23022002
662.	Kramer, G., et al. Role of bacteria in the development of kidney stones. Curr Opin Urol, 2000. 10: 35.
660	https://pubmed.ncbi.nlm.nih.gov/10650513
663.	Gettman, M.T., <i>et al.</i> Struvite stones: diagnosis and current treatment concepts. J Endourol, 1999. 13: 653.
	https://pubmed.ncbi.nlm.nih.gov/10608517
664.	Wall, I., et al. Biochemical risk factors in patients with renal staghorn stone disease. Urology, 1986.
004.	28: 377.
	https://pubmed.ncbi.nlm.nih.gov/3787896
665.	Akagashi, K., <i>et al</i> . Characteristics of patients with staghorn calculi in our experience. Int J Urol, 2004.
	11: 276.
	https://pubmed.ncbi.nlm.nih.gov/15147542
666.	Amaro, C.R., et al. Metabolic investigation of patients with staghorn calculus: is it necessary? Int Braz
	J Urol, 2009. 35: 658.
	https://pubmed.ncbi.nlm.nih.gov/20028571
667.	Resnick, M.I., et al. Bilateral staghorn calculipatient evaluation and management. J Urol, 1980. 123:
	338.
	https://pubmed.ncbi.nlm.nih.gov/7359631
668.	Kristensen, C., et al. Reduced glomerular filtration rate and hypercalciuria in primary struvite
	nephrolithiasis. Kidney Int, 1987. 32: 749.
	https://pubmed.ncbi.nlm.nih.gov/3430961
669.	Iqbal, M.W., et al. Should metabolic evaluation be performed in patients with struvite stones?
	Urolithiasis, 2017. 45: 185.
	https://pubmed.ncbi.nlm.nih.gov/27240693
670.	Bichler, K.H., et al. Urinary infection stones. Int J Antimicrob Agents, 2002. 19: 488.
	https://pubmed.ncbi.nlm.nih.gov/12135839
671.	Carpentier, X., et al. Relationships between carbonation rate of carbapatite and morphologic
	characteristics of calcium phosphate stones and etiology. Urology, 2009. 73: 968.
670	https://pubmed.ncbi.nlm.nih.gov/19394492
672.	Thompson, R.B., <i>et al.</i> Bacteriology of infected stones. Urology, 1973. 2: 627.
673.	<u>https://pubmed.ncbi.nlm.nih.gov/4587909</u> McLean, R.J., <i>et al</i> . The ecology and pathogenicity of urease-producing bacteria in the urinary tract.
070.	Crit Rev Microbiol, 1988. 16: 37.
	https://pubmed.ncbi.nlm.nih.gov/3053050

- 674. Wong HY, R.C., Griffith DP., Medical management and prevention of struvite stones, in Kidney Stones: Medical and Surgical Management, Coe & F.M. FL, Pak CYC, Parks JH, Preminger GM., Editors. 1996, Lippincott-Raven: Philadelphia.
- 675. Wall, I., *et al.* Long-term acidification of urine in patients treated for infected renal stones. Urol Int, 1990. 45: 336.

- 676. Griffith, D.P., *et al.* Randomized, double-blind trial of Lithostat (acetohydroxamic acid) in the palliative treatment of infection-induced urinary calculi. Eur Urol, 1991. 20: 243. https://pubmed.ncbi.nlm.nih.gov/1726639
- 677. Williams, J.J., *et al.* A randomized double-blind study of acetohydroxamic acid in struvite nephrolithiasis. N Engl J Med, 1984. 311: 760. https://pubmed.ncbi.nlm.nih.gov/6472365
- 678. Leusmann, D.B., et al. Results of 5,035 stone analyses: a contribution to epidemiology of urinary stone disease. Scand J Urol Nephrol, 1990. 24: 205. https://pubmed.ncbi.nlm.nih.gov/2237297
- 679. Milliner, D.S., *et al.* Urolithiasis in pediatric patients. Mayo Clin Proc, 1993. 68: 241. https://pubmed.ncbi.nlm.nih.gov/8474265
- 680. Prot-Bertoye, C., et al. CKD and Its Risk Factors among Patients with Cystinuria. Clin J Am Soc Nephrol, 2015. 10: 842.
- https://pubmed.ncbi.nlm.nih.gov/25717071
- 681. Kum, F., et al. Hypertension and renal impairment in patients with cystinuria: findings from a specialist cystinuria centre. Urolithiasis, 2019. 47: 357. https://pubmed.ncbi.nlm.nih.gov/30805669
- 682. Ferraro, P.M., *et al.* When to suspect a genetic disorder in a patient with renal stones, and why. Nephrol Dial Transplant, 2013. 28: 811.

https://pubmed.ncbi.nlm.nih.gov/23291371

683. Rogers, A., et al. Management of cystinuria. Urol Clin North Am, 2007. 34: 347. https://pubmed.ncbi.nlm.nih.gov/17678985

- 684. Dello Strologo, L., *et al.* Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. J Am Soc Nephrol, 2002. 13: 2547. https://pubmed.ncbi.nlm.nih.gov/12239244
- 685. Lee, W.S., *et al.* Cloning and chromosomal localization of a human kidney cDNA involved in cystine, dibasic, and neutral amino acid transport. J Clin Invest, 1993. 91: 1959. https://pubmed.ncbi.nlm.nih.gov/8486766
- 686. Daudon, M., et al. Cystine crystal volume determination: a useful tool in the management of cystinuric patients. Urol Res, 2003. 31: 207.
- https://pubmed.ncbi.nlm.nih.gov/12748836
 687. Malieckal, D.A., *et al.* Effect of increasing doses of cystine-binding thiol drugs on cystine capacity in patients with cystinuria. Urolithiasis, 2019. 47: 549.
- https://pubmed.ncbi.nlm.nih.gov/30980122
- 688. Nakagawa, Y., *et al.* Clinical use of cystine supersaturation measurements. J Urol, 2000. 164: 1481. https://pubmed.ncbi.nlm.nih.gov/11025687
- 689. Fjellstedt, E., *et al.* Cystine analyses of separate day and night urine as a basis for the management of patients with homozygous cystinuria. Urol Res, 2001. 29: 303. https://pubmed.ncbi.nlm.nih.gov/11762791
- 690. Ng, C.S., *et al.* Contemporary management of cystinuria. J Endourol, 1999. 13: 647. https://pubmed.ncbi.nlm.nih.gov/10608516
- 691. Knoll, T., *et al.* Cystinuria in childhood and adolescence: recommendations for diagnosis, treatment, and follow-up. Pediatr Nephrol, 2005. 20: 19. https://pubmed.ncbi.nlm.nih.gov/15602663
- 692. Biyani, C.S., *et al.* Cystinuria–Diagnosis and Management. EAU-EBU Update Series, 2006. 4: 175. https://www.sciencedirect.com/science/article/pii/S1871259206000384
- 693. Prot-Bertoye, C., *et al.* Adverse events associated with currently used medical treatments for cystinuria and treatment goals: results from a series of 442 patients in France. BJU Int, 2019. 124: 849.

https://pubmed.ncbi.nlm.nih.gov/30801923

694. Runolfsdottir, H.L., *et al.* Urinary 2,8-dihydroxyadenine excretion in patients with adenine phosphoribosyltransferase deficiency, carriers and healthy control subjects. Mol Genet Metab, 2019. 128: 144.

695.	Edvardsson, V.O., <i>et al.</i> Comparison of the effect of allopurinol and febuxostat on urinary 2,8-dihydroxyadenine excretion in patients with Adenine phosphoribosyltransferase deficiency (APRTd): A clinical trial. Eur J Intern Med, 2018. 48: 75. <u>https://pubmed.ncbi.nlm.nih.gov/29241594</u>
696.	Matlaga, B.R., <i>et al.</i> Drug-induced urinary calculi. Rev Urol, 2003. 5: 227. https://pubmed.ncbi.nlm.nih.gov/16985842
697.	Beltrami, P., <i>et al.</i> The endourological treatment of renal matrix stones. Urol Int, 2014. 93: 394. https://pubmed.ncbi.nlm.nih.gov/24969358
698.	Finocchiaro, R., <i>et al.</i> Usefulness of cyanide-nitroprusside test in detecting incomplete recessive heterozygotes for cystinuria: a standardized dilution procedure. Urol Res, 1998. 26: 401. <u>https://pubmed.ncbi.nlm.nih.gov/9879820</u>
699.	Nakagawa, Y., <i>et al.</i> A modified cyanide-nitroprusside method for quantifying urinary cystine concentration that corrects for creatinine interference. Clin Chim Acta, 1999. 289: 57. https://pubmed.ncbi.nlm.nih.gov/10556653
700.	Li, S., <i>et al.</i> Effect of stone composition on surgical stone recurrence: single center longitudinal analysis. Can J Urol, 2021. 28: 10744.
701.	https://pubmed.ncbi.nlm.nih.gov/34378509 Schwartz, B.F., <i>et al</i> . The vesical calculus. Urol Clin North Am, 2000. 27: 333. https://pubmed.ncbi.nlm.nih.gov/10778475
702.	Kum, F., et al. Do stones still kill? An analysis of death from stone disease 1999-2013 in England and Wales. BJU Int, 2016. 118: 140. https://pubmed.ncbi.nlm.nih.gov/26765522
703.	Ramello, A., et al. Epidemiology of nephrolithiasis. J Nephrol, 2000. 13 Suppl 3: S45. https://pubmed.ncbi.nlm.nih.gov/11132032
704.	Halstead, S.B. Epidemiology of bladder stone of children: precipitating events. Urolithiasis, 2016. 44: 101.
705.	https://pubmed.ncbi.nlm.nih.gov/26559057 Takasaki, E., <i>et al.</i> Chemical compositions of 300 lower urinary tract calculi and associated disorders in the urinary tract. Urol Int, 1995. 54: 89.
706.	https://pubmed.ncbi.nlm.nih.gov/7538235 Naqvi, S.A., <i>et al.</i> Bladder stone disease in children: clinical studies. J Pak Med Assoc, 1984. 34: 94. https://pubmed.ncbi.nlm.nih.gov/6429380
707.	Philippou, P., et al. The management of bladder lithiasis in the modern era of endourology. Urology, 2012. 79: 980.
708.	https://pubmed.ncbi.nlm.nih.gov/22119259 Lal, B., et al. Childhood Bladder Stones-an Endemic Disease of Developing Countries. J Ayub Med Coll Abbottabad, 2015. 27: 17. https://pubmed.ncbi.nlm.nih.gov/26182729
709.	Douenias, R., <i>et al.</i> Predisposing factors in bladder calculi. Review of 100 cases. Urology, 1991. 37: 240.
710.	<u>https://pubmed.ncbi.nlm.nih.gov/2000681</u> Smith, J.M., <i>et al.</i> Vesical stone: The clinical features of 652 cases. Ir Med J, 1975. 68: 85. <u>https://pubmed.ncbi.nlm.nih.gov/1112692</u>
711.	Millan-Rodriguez, F., <i>et al.</i> Urodynamic findings before and after noninvasive management of bladder calculi. BJU Int, 2004. 93: 1267.
712.	https://pubmed.ncbi.nlm.nih.gov/15180620 Yang, X., <i>et al.</i> The value of respective urodynamic parameters for evaluating the occurrence of complications linked to benign prostatic enlargement. Int Urol Nephrol, 2014. 46: 1761. https://pubmed.ncbi.nlm.nih.gov/24811567
713.	Childs, M.A., <i>et al.</i> Pathogenesis of bladder calculi in the presence of urinary stasis. J Urol, 2013. 189: 1347.
714.	https://pubmed.ncbi.nlm.nih.gov/23159588 Krambeck, A.E., <i>et al.</i> Experience with more than 1,000 holmium laser prostate enucleations for benign prostatic hyperplasia. J Urol, 2010. 183: 1105.
715.	https://pubmed.ncbi.nlm.nih.gov/20092844 Mebust, W.K., <i>et al.</i> Transurethral prostatectomy: immediate and postoperative complications. a cooperative study of 13 participating institutions evaluating 3,885 patients. 1989. J Urol, 2002. 167: 999.

716. Adegeest, C.Y., et al. Influence of severity and level of injury on the occurrence of complications during the subacute and chronic stage of traumatic spinal cord injury: a systematic review. J Neurosurg Spine, 2022. 36: 632. https://pubmed.ncbi.nlm.nih.gov/34767527 717. Kohler-Ockmore, J., et al. Long-term catheterization of the bladder: prevalence and morbidity. Br J Urol, 1996. 77: 347. https://pubmed.ncbi.nlm.nih.gov/8814836 718. Kim, J.W., et al. Intravesical prostatic protrusion is a risk factor for bladder stone in patients with benign prostatic hyperplasia. Urology, 2014. 84: 1026. https://pubmed.ncbi.nlm.nih.gov/25214201 Huang, W., et al. Risk factors for bladder calculi in patients with benign prostatic hyperplasia. 719. Medicine (Baltimore), 2017. 96: e7728. https://pubmed.ncbi.nlm.nih.gov/28796057 720. Bansal, A., et al. Prospective randomized comparison of three endoscopic modalities used in treatment of bladder stones. Urologia, 2016. 83: 87. https://pubmed.ncbi.nlm.nih.gov/27103095 721. Kawahara, T., et al. Correlation between the operation time using two different power settings of a Ho: YAG laser: laser power doesn't influence lithotripsy time. BMC Res Notes, 2013. 6: 80. https://pubmed.ncbi.nlm.nih.gov/23510531 722. Liu, G., et al. Minimally invasive percutaneous suprapubic cystolithotripsy: An effective treatment for bladder stones with urethral strictures. International Journal of Clinical and Experimental Medicine, 2016. 9: 19907. http://www.ijcem.com/files/ijcem0023634. 723. Soliman, N.A., et al. Endemic bladder calculi in children. Pediatr Nephrol, 2017. 32: 1489. https://pubmed.ncbi.nlm.nih.gov/27848095 724. Aurora, A.L., et al. Bladder stone disease of childhood. II. A clinico-pathological study. Acta Paediatr Scand, 1970. 59: 385. https://pubmed.ncbi.nlm.nih.gov/5447682 725. Valyasevi, A., et al. Studies of bladder stone disease in Thailand. VI. Urinary studies in children, 2-10 years old, resident in a hypo- and hyperendemic area. Am J Clin Nutr, 1967. 20: 1362. https://pubmed.ncbi.nlm.nih.gov/6074673 726. Al-Marhoon, M.S., et al. Comparison of endourological and open cystolithotomy in the management of bladder stones in children. J Urol, 2009. 181: 2684. https://pubmed.ncbi.nlm.nih.gov/19375100 727. Linsenmeyer, M.A., et al. Accuracy of bladder stone detection using abdominal x-ray after spinal cord injury. J Spinal Cord Med, 2004. 27: 438. https://pubmed.ncbi.nlm.nih.gov/15648797 728. Bakin, S., et al. Accuracy of ultrasound versus computed tomography urogram in detecting urinary tract calculi. Medical Journal of Malaysia, 2015. 70: 238. https://pubmed.ncbi.nlm.nih.gov/26358021 729. Ahmed, F.O., et al. A comparison between transabdominal ultrasonographic and cystourethroscopy findings in adult Sudanese patients presenting with haematuria. Int Urol Nephrol, 2015. 47: 223. https://pubmed.ncbi.nlm.nih.gov/25374263 730. Babjuk, M., et al., EAU Guidelines on Non-musle-invasive Bladder Cancer (TaT1 and CIS), in European Association of Urology Guidelines 2022 edition. 2022, The European Association of Urology: Arnhem, The Netherlands. 731. Johnson, E.K., et al. Are stone protocol computed tomography scans mandatory for children with suspected urinary calculi? Urology, 2011. 78: 662. https://pubmed.ncbi.nlm.nih.gov/21722946 732. Protection, R. ICRP publication 103. Ann ICRP, 2007. 37: 2. https://icrp.org/docs/ICRP_Publication_103-Annals_of_the_ICRP_37(2-4)-Free_extract.pdf 733. O'Connor, R.C., et al. Nonsurgical management of benign prostatic hyperplasia in men with bladder calculi. Urology, 2002. 60: 288. https://pubmed.ncbi.nlm.nih.gov/12137828 734. Rodman, J.S., et al. Dissolution of uric acid calculi. J Urol, 1984. 131: 1039. https://pubmed.ncbi.nlm.nih.gov/6726897 735. Lopez, J.R., et al. Irrigating solutions in bladder stone dissolution. Drug Intell Clin Pharm, 1987. 21: 872. https://pubmed.ncbi.nlm.nih.gov/3678056

736.	Donaldson, J.F., <i>et al.</i> Treatment of Bladder Stones in Adults and Children: A Systematic Review and Meta-analysis on Behalf of the European Association of Urology Urolithiasis Guideline Panel. Eur Urol, 2019. 76: 352.
	https://pubmed.ncbi.nlm.nih.gov/31311676
737.	Rattan, K.N., <i>et al.</i> Catheterless and drainless open suprapubic cystolithotomy in children: a safe procedure. Pediatr Surg Int, 2006. 22: 255.
	https://pubmed.ncbi.nlm.nih.gov/16416282
738.	Ullah, S., et al. Comparison of open vesicolithotomy and cystolitholapaxy. Pakistan Journal of Medical Sciences, 2007. 23: 47.
	https://www.pjms.com.pk/issues/janmar07/article/article7.html
739.	Gou, L., et al. Comparison of nephroscopy and cystoscopy used in the treatment of bladder stones: a systematic review and meta-analysis of randomized controlled trials. BMC Surg, 2021. 21: 448. https://pubmed.ncbi.nlm.nih.gov/34972510
740.	Wu, J.H., <i>et al.</i> Combined usage of Ho:YAG laser with monopolar resectoscope in the treatment of bladder stone and bladder outlet obstruction. Pak J Med Sci, 2014. 30: 908.
	https://pubmed.ncbi.nlm.nih.gov/25097543
741.	Halis, F., <i>et al.</i> The comparison of percutaneous and transurethral cystolithotripsy methods simultaneously performed with Transurethral Resection of Prostate in patients with BPH and bladder stone. KUWAIT MEDICAL JOURNAL, 2019. 51: 189.
	https://acikerisim.sakarya.edu.tr/handle/20.500.12619/7152
742.	Razvi, H.A., <i>et al.</i> Management of vesical calculi: comparison of lithotripsy devices. J Endourol, 1996. 10: 559.
	https://pubmed.ncbi.nlm.nih.gov/8972793
743.	Ercil, H., <i>et al.</i> Comparison of Ho:Yag laser and pneumatic lithotripsy combined with transurethral prostatectomy in high burden bladder stones with benign prostatic hyperplasia. Asian J Surg, 2016. 39: 238.
	https://pubmed.ncbi.nlm.nih.gov/25937584
744.	Lv, J., <i>et al.</i> A meta-analysis and systematic review of holmium laser treatment of bladder stones. Transl Androl Urol, 2021. 10: 3465.
	https://pubmed.ncbi.nlm.nih.gov/34532271
745.	Javanmard, B., <i>et al.</i> Surgical Management of Vesical Stones in Children: A Comparison Between Open Cystolithotomy, Percutaneous Cystolithotomy and Transurethral Cystolithotripsy With Holmium-YAG Laser. J Lasers Med Sci, 2018. 9: 183.
	https://pubmed.ncbi.nlm.nih.gov/30809329
746.	Gangkak, G., et al. Pneumatic cystolithotripsy versus holmium:yag laser cystolithotripsy in the
740.	treatment of pediatric bladder stones: a prospective randomized study. Pediatr Surg Int, 2016. 32: 609.
	https://pubmed.ncbi.nlm.nih.gov/26879752
747.	Abd, Z.H., et al. Comparison of the Safety and Efficacy of Laser Versus Pneumatic Intracorporeal Lithotripsy for Treatment of Bladder Stones in Children. J Clin Med, 2022. 11.
740	https://pubmed.ncbi.nlm.nih.gov/35159965
748.	Davis, N.F., et al. Treatment outcomes of bladder stones in children with intact bladders in developing countries: A systematic review of >1000 cases on behalf of the European Association of Urology Bladder Stones Guideline panel. J Pediatr Urol, 2022. 18: 132. https://pubmed.ncbi.nlm.nih.gov/35148953
749.	Shahat, A.A., et al. A randomised trial comparing transurethral to percutaneous cystolithotripsy in
	boys. BJU Int, 2022. 130: 254.
	https://pubmed.ncbi.nlm.nih.gov/35044035
750.	Ali, M., et al. Shock wave lithotripsy versus endoscopic cystolitholapaxy in the management of
,	patients presenting with calcular acute urinary retention: a randomised controlled trial. World J Urol, 2019. 37: 879.
	https://pubmed.ncbi.nlm.nih.gov/30105456
751.	Deswanto, I.A., <i>et al.</i> Management of bladder stones: the move towards non-invasive treatment. Medical Journal of Indonesia, 2017. 26: 128.
	https://mji.ui.ac.id/journal/index.php/mji/article/view/1602/1680
752.	Bhatia, V., <i>et al.</i> A comparative study of cystolithotripsy and extracorporeal shock wave therapy for bladder stones. Int Urol Nephrol, 1994. 26: 26.
	https://pubmed.ncbi.nlm.nih.gov/8026920
753.	Rizvi, S.A., <i>et al.</i> Management of pediatric urolithiasis in Pakistan: experience with 1,440 children. J Urol, 2003. 169: 634.
	https://pubmed.ncbi.nlm.nih.gov/12544331

- 754. Autorino, R., *et al.* Perioperative Outcomes of Robotic and Laparoscopic Simple Prostatectomy: A European-American Multi-institutional Analysis. Eur Urol, 2015. 68: 86. https://pubmed.ncbi.nlm.nih.gov/25484140
- 755. Matei, D.V., *et al.* Robot-assisted simple prostatectomy (RASP): does it make sense? BJU Int, 2012. 110: E972.

- 756. Philippou, P., *et al.* Prospective comparative study of endoscopic management of bladder lithiasis: is prostate surgery a necessary adjunct? Urology, 2011. 78: 43. https://pubmed.ncbi.nlm.nih.gov/21296391
- 757. Hasan, A.M., *et al.* Synchronous transurethral cystolitholapaxy and TURP reveals better results than transurethral cystolitholapaxy plus medical therapy for BPH: a randomized prospective study on 100 patients with concomitant urinary bladder stone(s) and BPH. World J Urol, 2022. 40: 483. https://pubmed.ncbi.nlm.nih.gov/34807286
- 758. Guo, R.Q., *et al.* Correlation of benign prostatic obstruction-related complications with clinical outcomes in patients after transurethral resection of the prostate. Kaohsiung J Med Sci, 2017. 33: 144.

https://pubmed.ncbi.nlm.nih.gov/28254117

- 759. Romero-Otero, J., *et al.* Analysis of Holmium Laser Enucleation of the Prostate in a High-Volume Center: The Impact of Concomitant Holmium Laser Cystolitholapaxy. J Endourol, 2019. 33: 564. <u>https://pubmed.ncbi.nlm.nih.gov/30773913</u>
- 760. Tangpaitoon, T., *et al.* Does Cystolitholapaxy at the Time of Holmium Laser Enucleation of the Prostate Affect Outcomes? Urology, 2017. 99: 192.
- https://pubmed.ncbi.nlm.nih.gov/27637344761.Romero-Otero, J., et al. Critical analysis of a multicentric experience with holmium laser enucleation
of the prostate for benign prostatic hyperplasia: outcomes and complications of 10 years of routine
clinical practice. BJU Int, 2020. 126: 177.

https://pubmed.ncbi.nlm.nih.gov/32020749

762. Chen, Y., *et al.* Bladder stone incidence in persons with spinal cord injury: determinants and trends, 1973-1996. Urology, 2001. 58: 665.

https://pubmed.ncbi.nlm.nih.gov/11711333

- 763. Hall, M.K., *et al.* Renal calculi in spinal cord-injured patient: association with reflux, bladder stones, and foley catheter drainage. Urology, 1989. 34: 126. https://pubmed.ncbi.nlm.nih.gov/2789449
- 764. DeVivo, M.J., et al. The risk of bladder calculi in patients with spinal cord injuries. Arch Intern Med, 1985. 145: 428.

https://pubmed.ncbi.nlm.nih.gov/3977510

765. Ord, J., *et al.* Bladder management and risk of bladder stone formation in spinal cord injured patients. J Urol, 2003. 170: 1734.

https://pubmed.ncbi.nlm.nih.gov/14532765

766. Bartel, P., et al. Bladder stones in patients with spinal cord injury: a long-term study. Spinal Cord, 2014. 52: 295.

- 767. Chen, H., et al. AB208. Can bladder irrigation reduce the morbidity of bladder stones in patients with spinal cord injury? Translational Andrology and Urology, 2016. 5: AB208. PMC4842518
- 768. Awad, S.A., et al. Long-term results and complications of augmentation ileocystoplasty for idiopathic urge incontinence in women. Br J Urol, 1998. 81: 569. <u>https://pubmed.ncbi.nlm.nih.gov/9598629</u>
- 769. Blyth, B., *et al.* Lithogenic properties of enterocystoplasty. J Urol, 1992. 148: 575. https://pubmed.ncbi.nlm.nih.gov/1640525
- 770. Flood, H.D., *et al.* Long-term results and complications using augmentation cystoplasty in reconstructive urology. Neurourol Urodyn, 1995. 14: 297. https://pubmed.ncbi.nlm.nih.gov/7581466
- Hayashi, Y., *et al.* Review of 86 patients with myelodysplasia and neurogenic bladder who underwent sigmoidocolocystoplasty and were followed more than 10 years. J Urol, 2006. 176: 1806. https://pubmed.ncbi.nlm.nih.gov/16945655
- 772. Husmann, D.A. Long-term complications following bladder augmentations in patients with spina bifida: bladder calculi, perforation of the augmented bladder and upper tract deterioration. Transl Androl Urol, 2016. 5: 3. https://pubmed.ncbi.nlm.nih.gov/26904407

773.	Nurse, D.E., et al. Stones in enterocystoplasties. Br J Urol, 1996. 77: 684.
	https://pubmed.ncbi.nlm.nih.gov/8689111
774.	Shekarriz, B., et al. Surgical complications of bladder augmentation: Comparison between various
	enterocystoplasties in 133 patients. Urology, 2000. 55: 123.
	https://pubmed.ncbi.nlm.nih.gov/10654908
775.	Welk, B., et al. Population based assessment of enterocystoplasty complications in adults. J Urol,
	2012. 188: 464.
	https://pubmed.ncbi.nlm.nih.gov/22704106
776.	Zhang, H., et al. Bladder stone formation after sigmoidocolocystoplasty: statistical analysis of risk
	factors. J Pediatr Surg, 2005. 40: 407.
	https://pubmed.ncbi.nlm.nih.gov/15750938
777.	Szymanski, K.M., et al. Additional Surgeries after Bladder Augmentation in Patients with Spina Bifida
	in the 21st Century. J Urol, 2020. 203: 1207.
	https://pubmed.ncbi.nlm.nih.gov/31951496
778.	DeFoor, W., et al. Bladder calculi after augmentation cystoplasty: risk factors and prevention
	strategies. J Urol, 2004. 172: 1964.
	https://pubmed.ncbi.nlm.nih.gov/15540766
779.	Hanna, M.K., et al. Challenges in salvaging urinary continence following failed bladder exstrophy
	repair in a developing country. J Pediatr Urol, 2017. 13: 270 e1.
	https://pubmed.ncbi.nlm.nih.gov/28262536
780.	Inouye, B.M., et al. Urologic complications of major genitourinary reconstruction in the exstrophy-
	epispadias complex. J Pediatr Urol, 2014. 10: 680.
	https://pubmed.ncbi.nlm.nih.gov/25082713
781.	Lima, S.V., et al. Nonsecretory intestinocystoplasty: a 15-year prospective study of 183 patients. J
	Urol, 2008. 179: 1113.
	https://pubmed.ncbi.nlm.nih.gov/18206934
782.	Metcalfe, P.D., et al. What is the need for additional bladder surgery after bladder augmentation in
	childhood? J Urol, 2006. 176: 1801.
	https://pubmed.ncbi.nlm.nih.gov/16945653
783.	Novak, T.E., et al. Complications of complex lower urinary tract reconstruction in patients with
	neurogenic versus nonneurogenic bladderis there a difference? J Urol, 2008. 180: 2629.
	https://pubmed.ncbi.nlm.nih.gov/18951557
784.	Surer, I., et al. Continent urinary diversion and the exstrophy-epispadias complex. J Urol, 2003. 169:
	1102.
	https://pubmed.ncbi.nlm.nih.gov/12576862
785.	Palmer, L.S., <i>et al.</i> Urolithiasis in children following augmentation cystoplasty. J Urol, 1993. 150: 726.
	https://pubmed.ncbi.nlm.nih.gov/8326634
786.	Kronner, K.M., <i>et al.</i> Bladder calculi in the pediatric augmented bladder. J Urol, 1998. 160: 1096.
	https://pubmed.ncbi.nlm.nih.gov/9719284
787.	Silver, R.I., <i>et al.</i> Urolithiasis in the exstrophy-epispadias complex. J Urol, 1997. 158: 1322.
	https://pubmed.ncbi.nlm.nih.gov/9258206
788.	Ross, J.P.J., et al. Pediatric bladder augmentation - Panacea or Pandora's box? Can Urol Assoc J,
	2020. 14: E251.
	https://pubmed.ncbi.nlm.nih.gov/31977304
789.	Kaefer, M., et al. Reservoir calculi: a comparison of reservoirs constructed from stomach and other
	enteric segments. J Urol, 1998. 160: 2187.
	https://pubmed.ncbi.nlm.nih.gov/9817364
790.	Wang, K., et al. Complications after sigmoidocolocystoplasty: Review of 100 cases at one institution.
	Journal of Pediatric Surgery, 1999. 34: 1672.
	https://pubmed.ncbi.nlm.nih.gov/10591568
791.	Wagstaff, K.E., et al. Blood and urine analysis in patients with intestinal bladders. Br J Urol, 1991. 68:
	311.
	https://pubmed.ncbi.nlm.nih.gov/1913074
792.	Breda, A., et al. Percutaneous cystolithotomy for calculi in reconstructed bladders: initial UCLA
	experience. J Urol, 2010. 183: 1989.
	https://pubmed.ncbi.nlm.nih.gov/20303534
793.	Kisku, S., et al. Bladder calculi in the augmented bladder: a follow-up study of 160 children and
	adolescents. J Pediatr Urol, 2015. 11: 66 e1.
	https://pubmed.ncbi.nlm.nih.gov/25819600

794.	Szymanski, K.M., et al. Cutting for stone in augmented bladders-what is the risk of recurrence and is
	it impacted by treatment modality? J Urol, 2014. 191: 1375.
	https://pubmed.ncbi.nlm.nih.gov/24316089
795.	Schlomer, B.J., et al. Cumulative incidence of outcomes and urologic procedures after augmentation
	cystoplasty. J Pediatr Urol, 2014. 10: 1043.
	https://pubmed.ncbi.nlm.nih.gov/24766857
796.	Turk, T.M., et al. Incidence of urolithiasis in cystectomy patients after intestinal conduit or continent
	urinary diversion. World J Urol, 1999. 17: 305.
	https://pubmed.ncbi.nlm.nih.gov/10552149
797.	Knap, M.M., et al. Early and late treatment-related morbidity following radical cystectomy. Scand J
, ,,,	Urol Nephrol, 2004. 38: 153.
	https://pubmed.ncbi.nlm.nih.gov/15204405
798.	Arai, Y., et al. Orthotopic ileal neobladder in male patients: functional outcomes of 66 cases. Int J
790.	Urol, 1999. 6: 388.
	https://pubmed.ncbi.nlm.nih.gov/10466450
799.	Badawy, A.A., et al. Orthotopic diversion after cystectomy in women: A single-centre experience with
199.	a 10-year follow-up. Arab J Urol, 2011. 9: 267.
	https://pubmed.ncbi.nlm.nih.gov/26579310
800.	Ji, H., et al. Identification and management of emptying failure in male patients with orthotopic
000.	neobladders after radical cystectomy for bladder cancer. Urology, 2010. 76: 644.
	https://pubmed.ncbi.nlm.nih.gov/20573379
801.	Madbouly, K. Large orthotopic reservoir stone burden: Role of open surgery. Urol Ann, 2010. 2: 96.
001.	https://pubmed.ncbi.nlm.nih.gov/20981195
802.	Miyake, H., et al. Experience with various types of orthotopic neobladder in Japanese men: long-term
002.	follow-up. Urol Int, 2010. 84: 34.
	https://pubmed.ncbi.nlm.nih.gov/20173366
803.	Moeen, A.M., et al. Management of neobladder complications: endoscopy comes first. Scand J Urol,
005.	2017. 51: 146.
	https://pubmed.ncbi.nlm.nih.gov/28635567
804.	Simon, J., et al. Neobladder emptying failure in males: incidence, etiology and therapeutic options. J
004.	Urol, 2006. 176: 1468.
	https://pubmed.ncbi.nlm.nih.gov/16952662
805.	Stein, J.P., et al. The orthotopic T pouch ileal neobladder: experience with 209 patients. J Urol, 2004.
005.	172: 584.
	https://pubmed.ncbi.nlm.nih.gov/15247737
806.	Miyake, H., et al. Orthotopic sigmoid neobladder after radical cystectomy: assessment of
000.	complications, functional outcomes and quality of life in 82 Japanese patients. BJU Int, 2010. 106:
	https://pubmed.ncbi.nlm.nih.gov/19888974
807.	Khalil, F., et al. Long-term follow-up after ileocaecal continent cutaneous urinary diversion (Mainz I
007.	pouch): A retrospective study of a monocentric experience. Arab J Urol, 2015. 13: 245.
	https://pubmed.ncbi.nlm.nih.gov/26609442
808.	Marien, T., et al. Characterization of Urolithiasis in Patients Following Lower Urinary Tract
000.	Reconstruction with Intestinal Segments. J Endourol, 2017. 31: 217.
	https://pubmed.ncbi.nlm.nih.gov/27936931
809.	Davis, W.B., et al. Percutaneous imaging-guided access for the treatment of calculi in continent
005.	urinary reservoirs. Cardiovasc Intervent Radiol, 2002. 25: 119.
	https://pubmed.ncbi.nlm.nih.gov/11901429
810.	Paez, E., et al. Percutaneous treatment of calculi in reconstructed bladder. J Endourol, 2007. 21: 334.
010.	https://pubmed.ncbi.nlm.nih.gov/17444782
811.	La Vecchia, C., et al. Genital and urinary tract diseases and bladder cancer. Cancer Res, 1991. 51:
811.	629.
	https://pubmed.ncbi.nlm.nih.gov/1985779
	Chung, S.D., et al. A case-control study on the association between bladder cancer and prior bladder
012.	calculus. BMC Cancer, 2013. 13: 117.
	https://pubmed.ncbi.nlm.nih.gov/23497224
813.	Jhamb, M., et al. Urinary tract diseases and bladder cancer risk: a case-control study. Cancer Causes
010.	Control, 2007. 18: 839.
	<u>https://pubmed.ncbi.nlm.nih.gov/17593531</u>

8. CONFLICT OF INTEREST

All members of the Urolithiasis Guidelines Panel have provided disclosure statements of all relationships that they have that might be perceived as a potential source of a conflict of interest. This information is publicly accessible through the European Association of Urology website: <u>http://www.uroweb.org/guidelines/</u>. This guidelines document was developed with the financial support of the European Association of Urology. No external sources of funding and support have been involved. The EAU is a non-profit organisation and funding is limited to administrative assistance and travel and meeting expenses. No honoraria or other reimbursements have been provided.

9. CITATION INFORMATION

The format in which to cite the EAU Guidelines will vary depending on the style guide of the journal in which the citation appears. Accordingly, the number of authors or whether, for instance, to include the publisher, location, or an ISBN number may vary.

The compilation of the complete Guidelines should be referenced as: EAU Guidelines. Edn. presented at the EAU Annual Congress Paris 2024. ISBN 978-94-92671-23-3.

If a publisher and/or location is required, include: EAU Guidelines Office, Arnhem, the Netherlands. <u>http://uroweb.org/guidelines/compilations-of-all-guidelines/</u>

References to individual guidelines should be structured in the following way: Contributors' names. Title of resource. Publication type. ISBN. Publisher and publisher location, year.