EAU Guidelines on Testicular Cancer

Guidelines Office: R. Shepherd

© European Association of Urology 2023
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>1.1</td>
<td>Aim and objectives</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Panel composition</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Available publications</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Publication history and summary of changes</td>
<td>5</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Publication history</td>
<td>5</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Summary of changes</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>METHODS</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Review</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Future goals</td>
<td>6</td>
</tr>
<tr>
<td>3.</td>
<td>EPIDEMIOLOGY, AETIOLOGY & PATHOLOGY</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>Epidemiology and Aetiology</td>
<td>6</td>
</tr>
<tr>
<td>3.2</td>
<td>Histological classification</td>
<td>7</td>
</tr>
<tr>
<td>4.</td>
<td>STAGING & PROGNOSIS</td>
<td>8</td>
</tr>
<tr>
<td>4.1</td>
<td>Staging</td>
<td>8</td>
</tr>
<tr>
<td>4.2</td>
<td>The Union for International Cancer Control prognostic groups</td>
<td>9</td>
</tr>
<tr>
<td>4.3</td>
<td>Risk factors for relapse in clinical stage I testicular cancer</td>
<td>10</td>
</tr>
<tr>
<td>4.4</td>
<td>The International Germ Cell Cancer Collaborative classification for the prognostic risk groups of metastatic testicular cancer</td>
<td>10</td>
</tr>
<tr>
<td>5.</td>
<td>DIAGNOSTIC EVALUATION</td>
<td>11</td>
</tr>
<tr>
<td>5.1</td>
<td>Physical examination</td>
<td>11</td>
</tr>
<tr>
<td>5.2</td>
<td>Imaging</td>
<td>11</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Ultrasonography of the testes</td>
<td>11</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Computerised tomography*</td>
<td>11</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Magnetic resonance imaging</td>
<td>12</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Fluorodeoxyglucose-positron emission tomography</td>
<td>12</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Bone scan</td>
<td>12</td>
</tr>
<tr>
<td>5.3</td>
<td>Serum tumour markers</td>
<td>12</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Pre-operative serum tumour markers</td>
<td>12</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Serum tumour markers after orchidectomy</td>
<td>12</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Other tumour markers</td>
<td>12</td>
</tr>
<tr>
<td>5.4</td>
<td>Inguinal exploration and initial management</td>
<td>12</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Orchidectomy</td>
<td>12</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Testis-sparing surgery</td>
<td>13</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Insertion of testicular prosthesis</td>
<td>13</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Contralateral biopsy</td>
<td>13</td>
</tr>
<tr>
<td>5.5</td>
<td>Pathological examination of the testis</td>
<td>13</td>
</tr>
<tr>
<td>5.6</td>
<td>Screening</td>
<td>16</td>
</tr>
<tr>
<td>5.7</td>
<td>Impact on fertility and fertility-associated issues</td>
<td>16</td>
</tr>
<tr>
<td>5.8</td>
<td>Guidelines for the diagnosis and staging of Testicular Cancer</td>
<td>16</td>
</tr>
<tr>
<td>6.</td>
<td>PROGNOSIS</td>
<td>17</td>
</tr>
<tr>
<td>6.1</td>
<td>Risk factors for metastatic relapse in clinical stage I testicular cancer</td>
<td>17</td>
</tr>
<tr>
<td>7.</td>
<td>DISEASE MANAGEMENT</td>
<td>17</td>
</tr>
<tr>
<td>7.1</td>
<td>Stage I germ cell tumours</td>
<td>17</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Germ cell neoplasia “in situ” (GCNIS)</td>
<td>17</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Seminoma germ cell tumour clinical stage I</td>
<td>17</td>
</tr>
<tr>
<td>7.1.2.1</td>
<td>Surveillance</td>
<td>18</td>
</tr>
<tr>
<td>7.1.2.2</td>
<td>Adjuvant chemotherapy</td>
<td>18</td>
</tr>
<tr>
<td>7.1.2.3</td>
<td>Adjuvant radiotherapy</td>
<td>18</td>
</tr>
<tr>
<td>7.1.2.4</td>
<td>Risk-adapted treatment</td>
<td>18</td>
</tr>
</tbody>
</table>
7.1.2.5 Guidelines for the treatment of clinical stage I seminoma testis tumours 18
7.1.3 Non-seminomatous germ cell tumours clinical stage I 19
 7.1.3.1 Surveillance 19
 7.1.3.2 Retroperitoneal lymph node dissection 19
 7.1.3.3 Adjuvant chemotherapy 20
 7.1.3.4 Risk-adapted treatment 20
 7.1.3.5 Post-pubertal teratoma with somatic malignant component 20
 7.1.3.6 Guidelines for the treatment of clinical stage I non-seminoma testis 21
 7.1.3.7 Risk-adapted treatment for clinical stage I non-seminomatous germ cell tumour based on vascular invasion 21
7.2 Metastatic germ cell tumours 22
 7.2.1 Clinical stage I with (persistently) elevated serum tumour markers 22
 7.2.2 Metastatic disease (stage IIA/B) 23
 7.2.2.1 Stage IIA/B seminoma 23
 7.2.2.2 Stage II A/B non-seminoma (NSGCT) 24
 7.2.2.2.1 Marker Positive 24
 7.2.2.2.2 Marker Negative 24
 7.2.3 Metastatic disease (stage II C and III) 25
 7.2.3.1 Primary chemotherapy 25
 7.2.3.1.1 Good-prognosis risk group - seminomatous germ cell tumour 25
 7.2.3.1.2 Intermediate-prognosis risk group - seminomatous germ cell tumour 25
 7.2.3.1.3 Good-prognosis risk group - non-seminomatous germ cell tumour 26
 7.2.3.1.4 Intermediate-prognosis risk group - non-seminomatous germ cell tumour 26
 7.2.3.1.5 Poor-prognosis risk group - non-seminomatous germ cell tumour 26
 7.2.3.1.6 Prevention of thromboembolism events during chemotherapy 27
 7.2.3.1.7 Guidelines for the Prevention of thromboembolism events during chemotherapy 27
7.3 Treatment evaluation and further treatment 28
 7.3.1 Treatment evaluation 28
 7.3.2 Residual tumour resection 28
 7.3.2.1 Seminoma 28
 7.3.2.2 Non-seminoma 28
 7.3.3 Sequencing of surgery in the case of multiple sites 29
 7.3.3.1 Quality and intensity of surgery 29
 7.3.3.2 Salvage and desperation surgery 29
 7.3.3.3 Consolidation chemotherapy after secondary surgery 29
 7.3.4 Systemic salvage treatment for relapse or refractory disease 30
 7.3.5 Second relapse 31
 7.3.5.1 Late relapse (more than two years after end of first-line treatment) 31
 7.3.6 Treatment of brain metastases 32
 7.3.6.1 Guidelines for the treatment of metastatic testicular germ cell tumours 32
8. FOLLOW-UP AFTER CURATIVE THERAPY 33
 8.1 Minimal recommendations for follow-up 33
 8.2 Quality of life and long-term toxicities after cure of testicular cancer 35
9. RARE ADULT PARA- AND TESTICULAR TUMOURS 35
 9.1 Classification 35
 9.2 Spermatocytic Tumours 35
 9.3 Sex cord-stromal tumours 35
 9.3.1 Leydig cell tumours 35
9.3.2 Sertoli cell tumours
9.3.3 Granulosa cell tumour
9.3.4 Thecoma/fibroma group of tumours
9.3.5 Paratesticular tumours of the epididymis or spermatic cord
9.4 Mesothelioma of the tunica vaginalis testis

10. REFERENCES
37

11. CONFLICT OF INTEREST
53

12. CITATION INFORMATION
53
1. INTRODUCTION

1.1 Aim and objectives
The aim of these guidelines is to present the current evidence for the diagnosis and treatment of patients with cancer of the testis. Testicular cancer (TC) represents 5% of urological tumours affecting mostly younger males. This document addresses post-pubertal testicular germ-cell tumours (TGCTs) in the male including spermatocytic tumour and sex cord/gonadal stromal tumours.

It must be emphasised that clinical guidelines present the best evidence available to the experts but following guideline recommendations will not necessarily result in the best outcome. Guidelines can never replace clinical expertise when making treatment decisions for individual patients, but rather help to focus decisions which should also take personal values and references/individual circumstances of patients into account. Guidelines are not mandates and do not purport to be a legal standard of care.

1.2 Panel composition
The European Association of Urology (EAU) Guidelines Panel on TC consists of a multidisciplinary group of clinicians including, urologists, medical oncologists, a radiation-oncologist, and a pathologist. When necessary, consultants from other specialties provide input. Members of this Panel have been selected, based on their expertise, to represent the professionals’ treating patients with TC. All experts involved in the production of this document have submitted potential conflict of interest statements which can be viewed on the EAU website: http://www.uroweb.org/guideline/testicular-cancer/.

1.3 Available publications
A quick reference document (Pocket guidelines) is available, in print and on the EAU website. These are abridged versions which may require consultation together with the full text version. Several scientific publications are available, as are a number of translations of all versions of the EAU TC Guidelines. All documents are accessible through the EAU website: http://www.uroweb.org/guideline/testicularcancer/.

1.4 Publication history and summary of changes
1.4.1 Publication history
The EAU published the first guidelines on TC in 2001. Since 2008, the TC Guidelines contains a separate chapter on testicular stromal tumours. The 2023 TC guideline presents a limited update of the 2022 publication with a full update scheduled for the 2024 print. A summary paper of the EAU TC guideline has been published in the society’s scientific journal European Urology, the latest version dating to 2015 [1].

1.4.2 Summary of changes
For the 2023 Testicular Cancer Guidelines, the key changes incorporated in this publication include:

- A forensic review of all the recommendations and supporting text;
- Old citations have been refreshed and replaced with newer references;
- The recent re-validation of the 1997 International Germ Cell Cancer Collaborative Group (IGCCCG) prognostic risk-factor based system for metastatic testicular Germ cell tumours in patients treated with cisplatin-etoposide as first-line chemotherapy has been included in the text replacing the old version with the corresponding references;
- New supporting text regarding VTE prophylaxis in males with metastatic germ cell tumours (GCTs) receiving chemotherapy has been added;
- Update of the histological classifications in sections 3.2 as well as inclusion of the World Health Organization (WHO) 2022 pathological classification.

2. METHODS

2.1 Introduction
For the 2023 EAU TC Guidelines, a forensic review and restructure was undertaken. An assessment of all newly published literature will be performed for the 2024 TC Guidelines.

Detailed search strategies for the 2022 guideline are available online: http://uroweb.org/guideline/testicular-cancer/?type=appendices-publications.
For each recommendation within the guidelines there is an accompanying online strength rating form which includes the assessment of the benefit to harms ratio and patients’ preferences for each recommendation. The strength rating forms draws on the guiding principles of the GRADE methodology but do not purport to be GRADE [2, 3]. Each strength rating form addresses a number of key elements namely:
1. the overall quality of the evidence which exists for the recommendation, references used in this text are graded according to a classification system modified from the Oxford Centre for Evidence-Based Medicine Levels of Evidence [4];
2. the magnitude of the effect (individual or combined effects);
3. the certainty of the results (precision, consistency, heterogeneity and other statistical or study related factors);
4. the balance between desirable and undesirable outcomes;
5. the impact of patient values and preferences on the intervention;
6. the certainty of those patient values and preferences.

These key elements are the basis which panels use to define the strength rating of each recommendation. The strength of each recommendation is represented by the words ‘strong’ or ‘weak’ [5]. The strength of each recommendation is determined by the balance between desirable and undesirable consequences of alternative management strategies, the quality of the evidence (including certainty of estimates), and nature and variability of patient values and preferences.

Additional information can be found in the general Methodology section of this print, and online at the EAU website: www.uroweb.org/guidelines.

A list of associations endorsing the EAU Guidelines can also be viewed online at the above address.

2.2 Review
The 2020 Guidelines document was subjected to peer-review following publication. The next peer-review is scheduled for 2024.

2.3 Future goals
• A collaborative SR on hypogonadism following orchidectomy with the EAU Male Sexual Health guidelines panel.
• Compilation of drug protocols as treatment guidelines for testicular cancer chemotherapy, which will be published online https://uroweb.org/guidelines/testicular-cancer/publications-appendices.
• A summary paper of the Testicular Cancer Guideline.
• The development of a TC survivorship plan in collaboration with patient associations.
• Care Pathways on diagnostic, treatment CS I, and treatment of metastatic disease.
• Collaboration with the patient office and patient representatives to develop a care pathway focusing on what the patient needs to know from diagnosis through to follow-up.

3. EPIDEMIOLOGY, AETIOLOGY & PATHOLOGY

3.1 Epidemiology and Aetiology
Testicular cancer represents 1% of adult neoplasms and 5% of urological tumours, with three to ten new cases per 100,000 males/per year in Western societies [6]. Testicular cancer has increased during recent decades, predominantly in industrialised countries [7, 8], and it continues to rise. At diagnosis, 1-2% are bilateral and 90-95% of cases are germ cell tumours (GCT) [6]. The peak incidence is in the third decade of life for non-seminomatous germ cell tumour (NSGCT) and mixed GCT patients, and in the fourth decade for seminoma testis (ST) patients. In 5% of GCT patients, the primary site is at an extragonadal location [9].

There are two fundamental categories of GCTs based on their development and epigenetic features. Most malignant post-pubertal GCTs originate from germ cell neoplasia “in situ” (GCNIS). Clinically and histologically, these are subdivided into seminomas and non-seminomas, the later encompassing somatic and extra-embryonal elements of embryonal carcinoma, yolk sac, choriocarcinoma and teratoma [10].

Non-GCNIS related tumours include pre-pubertal type teratoma and yolk sac, diagnosed in early childhood, and spermatocytic tumours in elderly men. Although there is overlapping histology between the pre-pubertal teratoma/yolk sac and the teratoma and yolk sac elements in the GCNIS-related non-seminomas, these have a separate and independent pathogenesis [10].
Epidemiological risk factors for TC are components of the testicular dysgenesis syndrome, which encompasses cryptorchidism, hypospadias, decreased spermatogenesis and impaired fertility [11-13] or disorders/differences of sex development [14]. Additional risk factors include a family history of TC among first-degree relatives and the presence of a contralateral testicular tumour or GCNIS [15-22]. Recent genome-wide association studies revealed detectable susceptibility loci leading to an increased relative risk to develop TC [23].

3.2 Histological classification

General:
The recommended pathological classification shown below is based on the 2022 update of the World Health Organization (WHO) pathological classification [24].

1. Germ cell tumours derived from germ cell neoplasia in situ
 - Non-invasive germ cell neoplasia
 - Germ cell neoplasia in situ
 - Specific forms of intratubular germ cell neoplasia
 - Gonadoblastoma
 - The germinoma family of tumours
 - Seminoma
 - Non-seminomatous germ cell tumours
 - Embryonal carcinoma
 - Yolk sac tumour, postpubertal-type
 - Choriocarcinoma
 - Placental site trophoblastic tumour
 - Epithelioid trophoblastic tumour
 - Cystic trophoblastic tumour
 - Teratoma, postpubertal-type
 - Teratoma with somatic-type malignancy
 - Mixed germ cell tumours of the testis
 - Mixed germ cell tumours
 - Germ cell tumours of unknown type
 - Regressed germ cell tumours

2. Germ cell tumours unrelated to germ cell neoplasia in situ
 - Spermatocytic tumour
 - Teratoma, prepubertal-type
 - Yolk sac tumour, prepubertal-type
 - Testicular neuroendocrine tumour, prepubertal-type
 - Mixed teratoma and yolk sac tumour, prepubertal-type

3. Sex cord stromal tumours of the testis
 - Leydig cell tumour
 - Leydig cell tumour
 - Sertoli cell tumours
 - Sertoli cell tumour
 - Large cell calcifying Sertoli cell tumour
 - Granulosa cell tumours
 - Adult granulosa cell tumour
 - Juvenile granulosa cell tumour
 - The fibroma thecoma family of tumours
 - Tumours in the fibroma thecoma group
 - Mixed and other sex cord stromal tumours
 - Mixed sex cord stromal tumour
 - Signet ring stromal tumour
 - Myoid gonadal stromal tumour
 - Sex cord stromal tumour NOS

4. Tumours of the testicular adnexa
 - Ovarian-type tumours of the collecting ducts and rete testis
 - Serous cystadenoma
 - Serous tumour of borderline malignancy
 - Serous cystadenocarcinoma
- Mucinous cystadenoma
- Mucinous borderline tumour
- Mucinous cystadenocarcinoma
- Endometrioid tumours
- Clear cell adenocarcinoma
- Brenner tumour

- Tumours of the collecting ducts and rete testis
 - Adenoma of the collecting ducts and rete testis
 - Adenocarcinoma of the collecting ducts and rete testis

- Paratesticular mesothelial tumours
 - Adenomatoid tumour
 - Well-differentiated papillary mesothelial tumour
 - Mesothelioma

- Tumours of the epididymis
 - Cystadenoma of the epididymis
 - Papillary cystadenoma of the epididymis
 - Adenocarcinoma of the epididymis
 - Squamous cell carcinoma of the epididymis
 - Melanotic neuroectodermal tumour of the epididymis

4. **STAGING & PROGNOSIS**

4.1 **Staging**

The 2016 Tumour, Node, Metastasis (TNM) classification of the International Union Against Cancer (UICC) is recommended to assess the anatomical extent of the disease (Table 1) [25].

Table 1: **TNM classification for testicular cancer** (adapted from UICC, 2016, 8th edn.) [25]

<table>
<thead>
<tr>
<th>pT - Primary Tumour</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pTX Primary tumour cannot be assessed (see note¹)</td>
<td></td>
</tr>
<tr>
<td>pT0 No evidence of primary tumour (e.g., histological scar in testis)</td>
<td></td>
</tr>
<tr>
<td>pTis Intratubular germ cell neoplasia (carcinoma in situ)*</td>
<td></td>
</tr>
<tr>
<td>pT1 Tumour limited to testis and epididymis without vascular/lymphatic invasion; tumour may invade tunica albuginea but not tunica vaginalis*</td>
<td></td>
</tr>
<tr>
<td>pT2 Tumour limited to testis and epididymis with vascular/lymphatic invasion, or tumour extending through tunica albuginea with involvement of tunica vaginalis**</td>
<td></td>
</tr>
<tr>
<td>pT3 Tumour invades spermatic cord with or without vascular/lymphatic invasion**</td>
<td></td>
</tr>
<tr>
<td>pT4 Tumour invades scrotum with or without vascular/lymphatic invasion</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N - Regional Lymph Nodes – Clinical</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nx Regional lymph nodes cannot be assessed</td>
<td></td>
</tr>
<tr>
<td>N0 No regional lymph node metastasis</td>
<td></td>
</tr>
<tr>
<td>N1 Metastasis with a lymph node mass 2 cm or less in greatest dimension or multiple lymph nodes, none more than 2 cm in greatest dimension</td>
<td></td>
</tr>
<tr>
<td>N2 Metastasis with a lymph node mass more than 2 cm but not more than 5 cm in greatest dimension; or more than 5 nodes positive, none more than 5 cm; or evidence of extranodal extension of tumour</td>
<td></td>
</tr>
<tr>
<td>N3 Metastasis with a lymph node mass more than 5 cm in greatest dimension</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pn - Regional Lymph Nodes – Pathological</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pNx Regional lymph nodes cannot be assessed</td>
<td></td>
</tr>
<tr>
<td>pN0 No regional lymph node metastasis</td>
<td></td>
</tr>
<tr>
<td>pN1 Metastasis with a lymph node mass 2 cm or less in greatest dimension and 5 or fewer positive nodes, none more than 2 cm in greatest dimension</td>
<td></td>
</tr>
<tr>
<td>pN2 Metastasis with a lymph node mass more than 2 cm but not more than 5 cm in greatest dimension; or more than 5 nodes positive, none more than 5 cm; or evidence of extranodal extension of tumour</td>
<td></td>
</tr>
<tr>
<td>pN3 Metastasis with a lymph node mass more than 5 cm in greatest dimension</td>
<td></td>
</tr>
</tbody>
</table>
M - Distant Metastasis

- MX: Distant metastasis cannot be assessed
- M0: No distant metastasis
- M1: Distant metastasis **
 - M1a: Non-regional lymph node(s) or lung metastasis
 - M1b: Distant metastasis other than non-regional lymph nodes and lung

S - Serum Tumour Markers (Pre chemotherapy)

- SX: Serum marker studies not available or not performed
- S0: Serum marker study levels within normal limits
- LDH (U/l)
 - S1: < 1.5 x N
 - S2: 1.5-10 x N
 - S3: > 10 x N
- hCG (mIU/mL)
 - S1: < 5,000
 - S2: 5,000-50,000
 - S3: > 50,000
- AFP (ng/mL)
 - S1: < 1,000
 - S2: 1,000-10,000
 - S3: > 10,000

N indicates the upper limit of normal.

LDH = lactate dehydrogenase; hCG = human chorionic gonadotrophin; AFP = alpha-fetoprotein.

1. Except for pTis and pT4, where radical orchidectomy is not always necessary for classification purposes, the extent of the primary tumour is assessed in the radical orchidectomy specimen; see pT. In other circumstances, TX is used if no radical orchidectomy has been performed.

2. The current “Carcinoma in situ” nomenclature is replaced by GCNIS.

3. AJCC eighth edition subdivides T1 Pure Seminoma by T1a and T1b depending on size no greater than 3 cm or greater than 3 cm in greatest dimension [26].

4. AJCC eighth edition considers the hilar soft tissue invasion and epididymal invasion as pT2, while the discontinuous involvement of the spermatic cord is considered as pM1 [26].

4.2 The Union for International Cancer Control prognostic groups

According to the 2016 TNM classification, the following prognostic groups are defined:

Table 2: Prognostic groups for testicular cancer (UICC, 2016, 8th edn.) [25]

<table>
<thead>
<tr>
<th>Stage grouping</th>
<th>T</th>
<th>N</th>
<th>M</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0</td>
<td>pTis</td>
<td>N0</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td>Stage I</td>
<td>pT1-T4</td>
<td>N0</td>
<td>M0</td>
<td>SX</td>
</tr>
<tr>
<td>Stage IA</td>
<td>pT1</td>
<td>N0</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td>Stage IB</td>
<td>pT2 - pT4</td>
<td>N0</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td>Stage IS</td>
<td>Any pT/TX</td>
<td>N0</td>
<td>M0</td>
<td>S1-3</td>
</tr>
<tr>
<td>Stage II</td>
<td>Any pT/TX</td>
<td>N1-N3</td>
<td>M0</td>
<td>SX</td>
</tr>
<tr>
<td>Stage IIA</td>
<td>Any pT/TX</td>
<td>N1</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td></td>
<td>Any pT/TX</td>
<td>N1</td>
<td>M0</td>
<td>S1</td>
</tr>
<tr>
<td>Stage IIB</td>
<td>Any pT/TX</td>
<td>N2</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td></td>
<td>Any pT/TX</td>
<td>N2</td>
<td>M0</td>
<td>S1</td>
</tr>
<tr>
<td>Stage IIC</td>
<td>Any pT/TX</td>
<td>N3</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td></td>
<td>Any pT/TX</td>
<td>N3</td>
<td>M0</td>
<td>S1</td>
</tr>
<tr>
<td>Stage III</td>
<td>Any pT/TX</td>
<td>Any N</td>
<td>M1a</td>
<td>SX</td>
</tr>
<tr>
<td>Stage IIIA</td>
<td>Any pT/TX</td>
<td>Any N</td>
<td>M1a</td>
<td>S0</td>
</tr>
<tr>
<td></td>
<td>Any pT/TX</td>
<td>Any N</td>
<td>M1a</td>
<td>S1</td>
</tr>
<tr>
<td>Stage IIIB</td>
<td>Any pT/TX</td>
<td>N1-N3</td>
<td>M0</td>
<td>S2</td>
</tr>
<tr>
<td></td>
<td>Any pT/TX</td>
<td>Any N</td>
<td>M1a</td>
<td>S2</td>
</tr>
<tr>
<td>Stage IIIC</td>
<td>Any pT/TX</td>
<td>N1-N3</td>
<td>M0</td>
<td>S3</td>
</tr>
<tr>
<td></td>
<td>Any pT/TX</td>
<td>Any N</td>
<td>M1a</td>
<td>S3</td>
</tr>
<tr>
<td></td>
<td>Any pT/TX</td>
<td>Any N</td>
<td>M1b</td>
<td>Any S</td>
</tr>
</tbody>
</table>

Stage IA: Patients have primary tumours limited to the testis and epididymis, with no evidence of microscopic vascular or lymphatic invasion by tumour cells on microscopy, no sign of metastases on clinical examination or imaging, and post-orchidectomy serum tumour marker levels within normal limits. Marker decline in patients with CS I disease should be assessed until normalisation occurs on two consecutive measurements.

Stage IB: Patients have a more locally invasive primary tumour, but no sign of metastatic disease.

Stage IS: Patients have persistently elevated (and usually increasing) serum tumour marker levels after orchidectomy, indicating the presence of subclinical metastatic disease (or possibly a second GCT in the contralateral testis).
In population-based patient series from developed countries, 75-80% of seminoma patients, and 55%-64% of non-seminomatous germ cell tumour (NSGCT) patients had stage I disease at diagnosis [27, 28]. True stage IS, i.e. persistently elevated or increasing serum tumour marker levels after orchidectomy, was found in approximately 5% of non-seminoma patients [27].

4.3 Risk factors for relapse in clinical stage I testicular cancer
In clinical stage (CS) I seminoma testis, primary testicular tumour size and stromal invasion of the rete testis have been identified to be associated with the risk of relapse in a pooled analysis of retrospective data [29]. Absence of both factors indicated a low risk of recurrence (6%) [30]. Whilst the original analysis was not supported by a further retrospective report [31], some prospective series [32-34] supported the prognostic significance of tumour size and stromal invasion of the rete testis. Two systematic reviews (SRs) assessed the prognostic value of both risk factors [35, 36]. While tumour size (continuous or dichotomised) and rete testis invasion were associated with a higher risk of relapse, both SRs highlighted the low quality of the studies included and concluded that the level of evidence was too low to recommend the use of both risk factors to drive adjuvant treatment decisions [35, 36].

For CS I non-seminoma testis, invasion of the primary tumour into blood or lymphatic vessels, i.e. lymphovascular invasion (LVI), was strongly associated with the risk of relapse disease [37-39]. While interobserver agreement is limited, immunohistochemistry might improve detection of LVI [40]. The percentage of embryonal carcinoma within a tumour may enhance the positive predictive value (PPV) and negative predictive value (NPV) of LVI [38], but there is no definitive prognostic cut-off for percentage [38]. Risk of relapse at five years for LVI-positive tumours was 50% versus 15% in LVI-negative tumours.

4.4 The International Germ Cell Cancer Collaborative classification for the prognostic risk groups of metastatic testicular cancer
The 1997 IGCCCG defined a prognostic risk-factor system for metastatic GCT based on identification of clinically independent adverse factors [41]. The classification has been revalidated on a contemporary cohort of metastatic testicular GCT treated with cisplatin/etoposide based first-line chemotherapy [42].

Compared to the 1997 figures, the five-year progression-free survival (PFS) of non-seminoma testis patients was unchanged for good- and intermediate-risk, but significantly improved for poor-risk patients (from 41% to 54%). The five-year overall survival (OS) was substantially better for all groups. In addition to the traditional components of the IGCCCG risk-prognostic groups previously described, older age (linear association) and lung metastasis were confirmed as negative factors for PFS [42].

With seminoma, the five-year PFS increased to 89% and 79% in good- and intermediate-risk patients with the corresponding OS rates of 95% and 88%. Lactate dehydrogenase (LDH) proved to be an additional adverse prognostic factor. Good-prognosis patients with LDH above 2.5 times the upper limit of normal (ULN) had a three-year PFS of 80% and a three-year OS of 92% (comparable to intermediate prognosis patients at 78% and 93% respectively), vs. 92% and 97% (in the group with lower LDH) [43].

Table 3: Prognostic-based staging system for metastatic germ cell cancer (IGCCCG) [42, 43]*

<table>
<thead>
<tr>
<th>Good-prognosis group</th>
<th>All of the following criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-seminoma</td>
<td>• Testis/retro-peritoneal primary</td>
</tr>
<tr>
<td>5-year PFS 90%</td>
<td>• No non-pulmonary visceral metastases</td>
</tr>
<tr>
<td>5-year survival 96%</td>
<td>• AFP < 1,000 ng/mL</td>
</tr>
<tr>
<td></td>
<td>• hCG < 5,000 IU/L (1,000 ng/mL)</td>
</tr>
<tr>
<td></td>
<td>• LDH < 1.5 x ULN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seminoma</th>
<th>All of the following criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-year PFS 89%</td>
<td>• Any primary site</td>
</tr>
<tr>
<td>5-year survival 95%</td>
<td>• No non-pulmonary visceral metastases</td>
</tr>
<tr>
<td></td>
<td>• Normal AFP</td>
</tr>
<tr>
<td></td>
<td>• Any hCG</td>
</tr>
<tr>
<td></td>
<td>• Any LDH</td>
</tr>
</tbody>
</table>
Intermediate-prognosis group

| Non-seminoma | Testis/retro-peritoneal primary
| Non-seminoma | No non-pulmonary visceral metastases
| 5-year PFS 78% | And any of the following criteria:
| 5-year survival 89% | • AFP 1,000 - 10,000 ng/mL or
| | • hCG 5,000 - 50,000 IU/L or
| | • LDH 1.5 - 10 x ULN

| Seminoma | All of the following criteria:
| 5-year PFS 79% | • Any primary site
| 5-year survival 88% | • Non-pulmonary visceral metastases
| | • Normal AFP
| | • Any hCG
| | • Any LDH

Poor-prognosis group

| Non-seminoma | Any of the following criteria:
| Non-seminoma | Mediastinal primary
| 5-year PFS 54% | • Non-pulmonary visceral metastases
| 5-year survival 67% | • AFP > 10,000 ng/mL or
| | • hCG > 50,000 IU/L (10,000 ng/mL) or
| | • LDH > 10 x ULN

| Seminoma | No patients classified as “poor-prognosis”

*Pre-chemotherapy serum tumour markers should be assessed immediately prior to the administration of chemotherapy (same day).
AFP = alpha-fetoprotein; hCG = human chorionic gonadotrophin; LDH = lactate dehydrogenase;
PFS = progression-free survival.

5. DIAGNOSTIC EVALUATION

5.1 Physical examination

Testicular cancer usually presents as a painless testicular mass or incidental finding on ultrasound (US). Pain, either scrotal or abdominal/back, may occur and result in delayed diagnosis [44]. Gynaecomastia may be present in a small number of patients. Clinical assessment should thus include abdominal, chest and supraclavicular examination.

5.2 Imaging

5.2.1 Ultrasonography of the testes

High-frequency (>10 MHz) testicular US should be used to confirm a testicular tumour to:

1. determine whether a mass is intra- or extra-testicular;
2. assess its volume and anatomical location;
3. characterise the contralateral testicle – to exclude other lesions and identify risk factors for GCNIS (see section 5.4.4).

It is also recommended for all men with retroperitoneal or visceral masses with/or without elevated serum β-hCG or alpha-fetoprotein AFP in the absence of a palpable testicular mass [45].

5.2.2 Computerised tomography

Contrast enhanced computerised tomography (CECT) is recommended in all patients for staging before orchidectomy [46]. This may be postponed until histopathological confirmation of malignancy. The size of metastases should be described in three dimensions, or at least by the greatest diameter. The expected patterns of nodal spread in TC should be considered when evaluating small and borderline nodes.

Cerebral imaging is recommended in GCT patients with either multiple lung metastases or poor-prognosis IGCCCG risk group (especially with hCG values > 5,000 UI/L), or clinical symptoms [47]. Contrast enhanced computerised tomography may be used if magnetic resonance imaging (MRI) is not available or contraindicated.

*For more information regarding CT, please see appendix 1, available online https://uroweb.org/guidelines/testicular-cancer/publications-appendices
5.2.3 **Magnetic resonance imaging**

Scrotal MRI provides higher sensitivity and specificity than US in the diagnosis of TC, but its high cost does not justify its routine use for this purpose [48], it should only be considered when US is inconclusive, as local staging for testis-sparing surgery (TSS), to differentiate between paratesticular and intratesticular lesions, and/or to characterise intratesticular masses (e.g., distinctive features of Leydig tumours) [48].

Magnetic resonance imaging of the abdomen may be used for staging where there are contra-indications to iodine-based contrast media with similar accuracy to CECT in the detection of retroperitoneal nodal enlargement [46].

Data from cerebral and spinal metastasis detection in other malignancies suggest that MRI is far more sensitive than CECT but requires specific expertise [49]. When available, MRI should be used to evaluate for both cerebral and spinal metastases in GCTs if there are clinical concerns [50].

5.2.4 **Fluorodeoxyglucose-positron emission tomography**

Evidence does not support the use of Fluorodeoxyglucose-positron emission tomography (FDG-PET) for initial staging of TC [51, 52].

5.2.5 **Bone scan**

There is no evidence to support the routine use of bone scan for staging of TC unless clinically indicated.

5.3 **Serum tumour markers**

5.3.1 **Pre-operative serum tumour markers**

Serum alphafetoprotein (AFP), beta subunit of human Chorionic Gonadotropin (β-hCG) and LDH should be determined before and after orchidectomy as they support the diagnosis of TC and may be indicative of GCT histology.

Up to 90% of NSGCT’s have elevated AFP or β-hCG at diagnosis with 39% having an increased level of both [44, 53, 54]. Pure seminomas may also have modestly elevated β-hCG level at diagnosis in up to 30% of cases [53, 55]. Significant elevation of AFP in patients with seminomas should raise concerns of a non-seminoma component. Modest stable elevations may be considered a normal variant [41].

Tumour markers have limitations due to their low sensitivity as normal levels do not exclude the presence of disease [54].

5.3.2 **Serum tumour markers after orchidectomy**

Tumour markers need to be repeated following orchidectomy providing staging and prognostic information [41]. If elevated pre-operatively, normalisation may take several weeks as the serum half-lives of AFP and β-hCG are five to seven days and one to three days, respectively [54, 55]. If these remain elevated or increase metastatic disease is likely [53]. Marker normalisation after orchidectomy, however, does not exclude the possibility of metastatic disease.

In addition to staging, marker levels are used to define risk stratification and prognosis (Table 3). They are also used to monitor treatment response and detect disease relapse [53, 55]. With follow-up the precise frequency of testing is not well defined [56].

5.3.3 **Other tumour markers**

Micro RNAs (miRNAs) are emerging as potential new biomarkers. A number of studies suggest higher discriminatory accuracy for miRNAs (particularly miR-371a-3p) compared to conventional GCT markers in diagnosis, treatment monitoring, and prediction of residual or recurrent viable disease [57-59]. Furthermore, they may differentiate between GCT and other (stromal/non-germ cell originating) tumours [59]. Issues which need to be resolved for use in routine clinical practice include laboratory standardisation, availability of the test and, importantly, prognostic validation [58].

5.4 **Inguinal exploration and initial management**

5.4.1 **Orchidectomy**

Orchidectomy including division of the spermatic cord at the internal inguinal ring represents the standard of care for patients with TC. A scrotal approach should be avoided when TC is suspected as it results in a higher local recurrence rate [60].
5.4.2 **Testis-sparing surgery**

Testis-sparing surgery (TSS) is a valid treatment option in men with interstitial cell or benign testicular tumours and may prevent hypogonadism and infertility in young men.

In men with GCTs, orchidectomy represents the standard of care as pathological studies describe multifocal and/or adjacent GCNIS in 20-30% of patients [61, 62]. Testis sparing surgery when feasible, is indicated in synchronous bilateral tumours or in tumours in solitary testis [63]. In this setting, at least two additional testicular biopsies should be taken to exclude GCNIS [64].

Testis-sparing surgery may be offered for small or indeterminate testicular masses, negative tumour markers and a normal contralateral testis to avoid over-treatment of potentially benign lesions and preserve testicular function [63, 65]. Patients should be informed that cancer can be present even in small (i.e., < 1 cm) masses [63, 66, 67].

In both settings, TSS should be offered together with frozen section examination (FSE). Frozen section examination has shown to be reliable and highly concordant with final histopathology in expert hands, with a 99% and 96% of sensitivity and specificity, respectively, and 98% and 97% of PPV and NPV, respectively [65, 68, 69]. In cases of discordance between FSE and final pathology, delayed orchidectomy might be needed.

Whether history of GCT or indeterminate small testicular lesion, patients should be made aware on the following issues regarding TSS practice: that limited data exists regarding oncological safety of TSS; that local recurrence rates have been reported (up to 26.9%), when TC is present in the specimen [63, 67, 70], and that TSS has implications for ongoing surveillance of the testis. Similarly, patients should be informed about the role and impact of adjuvant radiotherapy when GCNIS is present: potential infertility, the need for hormonal supplementation despite parenchyma preservation [63, 67, 71], and that discordance between FSE and final pathology requiring a delayed orchidectomy.

5.4.3 **Insertion of testicular prosthesis**

Testicular prosthesis should be offered to all patients receiving unilateral or bilateral orchidectomy [71]. The prosthesis can be inserted at orchidectomy, or subsequently, without adverse consequences, including infection [72].

5.4.4 **Contralateral biopsy**

Contralateral biopsy has been advocated to exclude GCNIS [73] and is routine policy in some countries [74]. It is, however, controversial to recommend routine contralateral biopsy in all patients due to the low incidence of GCNIS and metachronous contralateral testicular tumours (up to 9% and approximately 2.5%, respectively) [75, 76], the morbidity of GCNIS treatment (see section 7.1.1), and the fact that most metachronous tumours are low stage at presentation [77, 78]. Nevertheless, the risks and benefits of biopsy of the contralateral testis should be discussed with TC patients at high risk for contralateral GCNIS, i.e., testicular volume < 12 mL, and/or a history of cryptorchidism. Contralateral biopsy is not necessary in patients > 40 years without risk factors [64, 79, 80]. Patients should be informed that a subsequent GCT may arise despite a negative biopsy [81]. When indicated, a two-site surgical testicular biopsy is the technical procedure recommended [64].

5.5 **Pathological examination of the testis**

The recommendations for reporting and handling the pathological examination of a testis neoplasm are based on the recommendations of the International Society of Urological Pathology (ISUP) [37, 82-84].

Mandatory pathological requirements:

- **Macroscopic features:** It must indicate radical or partial orchidectomy, side, testis size, number of tumours, and macroscopic features of the epididymis, cord length, and tunica vaginalis.
- **Sampling:** At least a 1 cm² section for every centimetre of maximum tumour diameter including normal macroscopic parenchyma (if present), tunica albuginea and epididymis, with selection of suspicious areas. If the tumour is < 20 mm it should be completely sampled.
- At least one proximal (base of the cord) and one distal section of spermatic cord plus any suspicious area. Cord blocks should preferably be taken prior to tumour sections to avoid contamination.
- **Microscopic features and diagnosis:** histological types (specify individual components and estimate amount as percentage) according to WHO 2016 [82]:
 - Presence or absence of peri-tumoural lymph and/or blood vessel invasion. In case of doubt, the use of endothelial markers, such as CD31, are recommended.
 - Presence or absence of GCNIS in non-tumour parenchyma.
- In case of rete testis invasion, attention should be paid to distinguishing between pagetoid involvement and stromal invasion [83].
 - If microscopic findings are not concordant with serum markers further block samples should be taken.
 - pT category according to TNM 2016 [25]. In a multifocal seminoma the largest nodule should be used to determine pT category.

Immune-histochemical markers in cases of doubt are:
- Seminoma: CD-117 (c-KIT), OCT 3/4, Sall4, PLAP
- GCNIS: CD-117 (c-KIT), OCT 3 / 4, Sall4, PLAP
- Syncytiotrophoblastic: β-hCG
- Embryonal carcinoma: CD30
- Yolk sac tumour: Glypican 3
- Sex cord gonadal tumours: Inhibin, calretinin

The search for i12p (FISH or PCR) or gain in Ch9 (spermatocytic tumour) are additional molecular techniques which are only rarely required. Confirmation of the utility of other molecular markers such as P53, MDM2, KRAS and HRAS is awaited [85].

In order to facilitate consistent and accurate data collection, promote research, and improve patient care, the International Collaboration on Cancer Reporting has constructed a dataset for the reporting of urological neoplasms. The dataset for testicular tumours encompasses the updated 2016 WHO classification of urological tumours, the ISUP consultation and staging with the 8th edition of the American Joint Cancer Committee (AJCC) [84].

The dataset includes those elements unanimously agreed by the expert panel as “required” (mandatory) and those “recommended” (non-mandatory) that would ideally be included but are either non-validated or not regularly used in patient management [84]. The dataset for handling pathological assessment of TC is shown in Table 4.

Table 4: Recommended dataset for reporting of neoplasia of the testis (modified from the International Collaboration on Cancer Reporting) [84].

<table>
<thead>
<tr>
<th>Elements</th>
<th>Required</th>
<th>Recommended*</th>
<th>Content</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| Clinical information | √ | | - Not provided
- Previous history of testicular cancer
- Previous therapy
- Other | Specify each |
| Serum tumour markers | √ | | - Not provided
- If provided within normal limits or
- Specify serum tumour markers used
- Specify levels
- Specify date markers were drawn | Select all that apply: Serum tumour markers: LDH (IU/L), AFP (ug/L), β-hCG (IU/L) |
| Operative procedure | √ | | - Not specified
- Orchidectomy partial
- Orchidectomy radical
- Other | Specify side for partial or radical orchidectomy. Specify other |
| Tumour focality | √ | | - Cannot be assessed
- Indeterminate
- Unifocal
- Multifocal | If multifocal specify number of tumours in specimen. |
| Maximum tumour dimension | √ | | - Cannot be assessed
- Dimensions largest tumour (mm)
- Dimensions additional tumour nodules# | Specify at least maximum diameter of largest tumour. Preferably specified 3 dimensions/axes.# |
| **Macroscopic extent of invasion** | ✓ | - Cannot be assessed
- Confined to testis
- Invades epididymis
- Invades tunica vaginalis
- Invades hilar structures
- Invades spermatic cord
- Invades scrotum
- Other | Select all that apply. If other specify. |
| **Block identification key** | ✓ | N/A | List overleaf or separately with indication of nature and origin of all tissue blocks. |
| **Histological tumour type** | ✓ | - Germ cell tumour: type and percentage
- Other | Use WHO classification (2016). If other specify. |
| **Microscopic extent of invasion** | ✓ | - Rete testis of stromal/interstitial type
- Epididymis
- Hilar fat
- Tunica albuginea*
- Tunica vaginalis
- Spermatic cord
- Scrotal wall | For all:
- not submitted
- not involved
- involved |
| **Lymphovascular extension** | ✓ | - Not identified
- Present | If present specify type. # |
| **Intratubular lesions (GCNIS)** | ✓ | - Not identified
- Present
- Other intratubular lesions | If other intratubular lesions present identify type. # |
| **Margin status** | ✓ | - Partial orchidectomy:
. cannot be assessed
. involved
. not involved
- Radical orchidectomy:
. cannot be assessed
. spermatic cord margin involved
. spermatic cord margin not involved
. Other margin involved | In partial orchidectomy if margin not involved, distance of tumour from closest margin (mm). #
If other margin involved specify. |
| **Coexisting pathology** | ✓ | - None identified
- Hemosiderin-laden macrophages
- Atrophy
- Other | If other specify |
| **Ancillary studies** | ✓ | - Not performed
- Performed | If performed specify |
| **Response to neoadjuvant therapy** | ✓ | - Present
- Absent,
- No prior treatment,
- Cannot be assessed | Explain reasons if cannot be assessed. |
| **Pathologic staging** | ✓ | T classification according to TNM 8th edition (UICC)** | m-multiple primary tumours
r-recurrent
y-post-therapy |

*Not mandatory. Ideally to be included but either non-validated or no regularly used in patient management.

**TNM 8th edition (AJCC) used in the original publication.

Recommended, i.p. intratubular seminoma and embryonal carcinoma.
5.6 Screening
There are no high-level evidence studies supporting screening programs [86, 87]. In contrast, young males should be informed about the importance of physical self-examination, particularly those with risk factors including a history of cryptorchidism or a male relative with TC [88].

5.7 Impact on fertility and fertility-associated issues
Sperm abnormalities and Leydig cell dysfunction are frequently found in patients with TCs prior to orchidectomy [89, 90]. Up to 24% of TC patients are azoospermic and almost 50% have abnormal sperm counts (oligozoospermic) before treatment [90].

Treatment for TC, including orchidectomy, may have a negative impact on reproductive function [91]. Both chemotherapy and radiation treatment (RT) can impair fertility. Long-term infertility is rare after RT and dose-cumulative-dependent with chemotherapy [92-94]. Spermatogenesis usually recovers one to four years after chemotherapy [95]. Adjuvant treatment for CS I (BEP [Bleomycin, etoposide, cisplatin] x1; Carbo x1) does not appear to significantly affect testicular function compared to surveillance, with full recovery after one year [96].

All patients should be offered semen preservation as the most cost-effective strategy for fertility preservation. This should be offered before orchidectomy when feasible, maximising the chances of fertilisation, and avoiding the risk of a non-functioning remaining testicle. If not arranged before orchidectomy, it should be undertaken prior to chemotherapy or RT [92-94, 97, 98].

Chemotherapy and RT are both teratogenic. Therefore, contraception must be used during treatment and for at least six months after its completion [99].

For further information regarding management of hypogonadism and sub-fertility the reader is referred to the EAU Guidelines on Sexual Reproductive Health [100].

5.8 Guidelines for the diagnosis and staging of Testicular Cancer

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor sperm quality is frequently found in TC patients, before and after treatment.</td>
<td>2b</td>
</tr>
<tr>
<td>Semen preservation is the most cost-effective strategy for fertility preservation.</td>
<td></td>
</tr>
<tr>
<td>Serum tumour markers (AFP, (\beta)-hCG and LDH) should be determined before and</td>
<td>2b</td>
</tr>
<tr>
<td>after orchidectomy and throughout follow-up. They are used for accurate staging,</td>
<td></td>
</tr>
<tr>
<td>risk stratification, to monitor treatment and to detect relapse.</td>
<td></td>
</tr>
<tr>
<td>For abdominal staging, CECT has a median sensitivity, specificity, PPV, NPV and</td>
<td>2a</td>
</tr>
<tr>
<td>accuracy of 67%, 95%, 87%, 73% and 83%, respectively. Sensitivity decreases and</td>
<td></td>
</tr>
<tr>
<td>specificity increases with increasing lymph node size.</td>
<td></td>
</tr>
<tr>
<td>For chest staging, CECT has a median sensitivity, specificity, PPV, NPV and</td>
<td>2a</td>
</tr>
<tr>
<td>accuracy of 100%, 93%, 68%, 100% and 93%, respectively.</td>
<td></td>
</tr>
<tr>
<td>Magnetic resonance imaging and CECT are key image modalities for the detection of</td>
<td>2b</td>
</tr>
<tr>
<td>brain metastasis. Magnetic resonance imaging is far more sensitive than CECT,</td>
<td></td>
</tr>
<tr>
<td>though it does require expertise.</td>
<td></td>
</tr>
<tr>
<td>Fluorodeoxyglucose-positron emission tomography has a limited diagnostic accuracy</td>
<td>2b</td>
</tr>
<tr>
<td>for staging before chemotherapy.</td>
<td></td>
</tr>
<tr>
<td>There are no high-level evidence studies supporting screening programs.</td>
<td>2b</td>
</tr>
<tr>
<td>In TSS, FSE has shown to be reliable and highly concordant with final histopathology.</td>
<td>1b</td>
</tr>
<tr>
<td>There is no evidence supporting any size criteria for a testicular lesion to be</td>
<td>2b</td>
</tr>
<tr>
<td>safely followed-up.</td>
<td></td>
</tr>
<tr>
<td>In patients without risk factors, there is low incidence of contralateral GCNIS</td>
<td>2b</td>
</tr>
<tr>
<td>and of metachronous GCT.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discuss sperm banking with all men prior to starting treatment for testicular</td>
<td>Strong</td>
</tr>
<tr>
<td>cancer (TC).</td>
<td></td>
</tr>
<tr>
<td>Perform bilateral testicular ultrasound (US) in all patients with suspicion of TC.</td>
<td>Strong</td>
</tr>
<tr>
<td>Perform physical examination including supraclavicular, cervical, axillary, and</td>
<td>Strong</td>
</tr>
<tr>
<td>inguinal lymph nodes, breast, and testicles.</td>
<td></td>
</tr>
<tr>
<td>Measure serum tumour markers both before and after orchidectomy taking into</td>
<td>Strong</td>
</tr>
<tr>
<td>account half-life kinetics.</td>
<td></td>
</tr>
<tr>
<td>Perform orchidectomy and pathological examination of the testis to confirm the</td>
<td>Strong</td>
</tr>
<tr>
<td>diagnosis and to define the local extension (pT category). In a life-threatening</td>
<td></td>
</tr>
<tr>
<td>situation due to extensive metastasis, commence chemotherapy prior to orchidectomy.</td>
<td></td>
</tr>
</tbody>
</table>
Perform contrast enhanced computerised tomography (CECT) scan (chest, abdomen, and pelvis) in patients with a diagnosis of TC. In case of iodine allergy or other limiting factors perform abdominal and pelvic magnetic resonance imaging (MRI).

Perform MRI of the brain (or brain CECT if not available) in patients with multiple lung metastases, or high beta subunit of human Chorionic Gonadotropin (β-hCG) values, or those in the poor-prognosis International Germ Cell Cancer Collaborative Group (IGCCCG) risk group.

Do not use positron emission tomography–computed tomography or bone scan for staging.

Encourage patients with TC to perform self-examination and to inform first-degree male relatives of the need for self-examination.

Discuss testis-sparing surgery with frozen section examination in patients with a high likelihood of having a benign testicular tumour which are suitable for enucleation.

Discuss biopsy of the contralateral testis to patients with TC and who are at high-risk for contralateral germ cell neoplasia “in situ”.

6. PROGNOSIS

6.1 Risk factors for metastatic relapse in clinical stage I testicular cancer

With stage I seminoma, primary testicular tumour size and stromal invasion of the rete testis have been identified as predictors for relapse in a pooled analysis of retrospective data [29]. Absence of both factors indicates a low risk of recurrence (6%) [30]. Whilst the original analysis was not supported by a further retrospective report [31], some prospective series [32-34] support the prognostic significance of tumour size and stromal invasion of the rete tests. Two SRs have assessed the prognostic value of these risk factors [35, 36]. While tumour size (continuous or dichotomised) and rete testis invasion are associated with a higher risk of relapse, both SRs highlighted the low quality of the studies included and that the level of evidence is too low to recommend the use of these pathological risk factors to drive adjuvant treatment decisions [35, 36].

For non-seminoma stage I, invasion of the primary tumour into blood or lymphatic vessels, LVI, is the most reliable single predictor of occult metastatic disease [37-39]; while interobserver agreement is limited, immunohistochemistry might improve detection [40]. The percentage of embryonal carcinoma within a tumour may enhance the PPV and NPV of LVI [38], but there is no definitive prognostic cut-off for percentage [38]. Risk of relapse at five years with LVI is 50%, compared to 15% without LVI. The significant prognostic pathological risk factors for stage I TC are listed in Table 5.

Table 5: Pathological risk-factors for occult metastatic disease in stage I testicular cancer

<table>
<thead>
<tr>
<th>Histological type</th>
<th>Seminoma [35]</th>
<th>Non-seminoma [39, 83]</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Pathological risk-factors</td>
<td>• Tumour size</td>
<td>• Lympho-vascular invasion in peri-tumoral tissue</td>
</tr>
<tr>
<td>• Invasion of the rete testis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. DISEASE MANAGEMENT

7.1 Stage I germ cell tumours

7.1.1 Germ cell neoplasia “in situ” (GCNIS)

If GCNIS is diagnosed and the contralateral testis is normal, options include orchidectomy or close observation, as the five-year risk of developing TC is 50% [101]. In a solitary testis, local radiotherapy (18-20 Gy in fractions of 2 Gy) should be considered [94, 102-104]. Radiotherapy to a solitary testis will result in infertility and increased long-term risk of Leydig cell insufficiency [94]. Fertile patients who wish to father children may defer radiation therapy and be monitored with regular testicular US [64].

Chemotherapy is ineffective to reliably irradiate GCNIS [105, 106].

7.1.2 Seminoma germ cell tumour clinical stage I

Up to 20% of seminoma germ cell tumour clinical stage I (SGCT CS I) patients have subclinical metastatic
disease, usually in the retroperitoneum, and will relapse after orchidec- tomy alone [107, 108]. Adjuvant treatment decisions should be based on thorough discussions with the patient, incorporating potential risks and benefits, as well as individual patient circumstances. Regardless of management, survival in stage I disease should be almost 100%.

7.1.2.1 Surveillance
This requires a strict protocol of repeated cross-sectional imaging, monitoring of serum tumour markers and clinical assessment for the early identification of patients experiencing relapse who must receive salvage treatment (See Table 11).

Several prospective, non-randomised surveillance studies have been conducted over the past decade. These have shown an overall risk of relapse in unselected CS I patients of 12-20% at five years, with 17% in the largest series of over 1,500 patients [109]. Most occur in the retroperitoneum during the first two years [110, 111].

Risk of relapse is 12% with small size (tumours < 3 cm) as a single parameter [33, 110]. With both, small tumour size (< 4 cm) and absence of stromal rete testis invasion, even lower recurrence rates of 6% are described.

The cancer-specific survival (CSS) rate on “active surveillance” for CS I seminoma is over 99% [109, 111, 112]. Whilst cost effective compared to other management strategies [113], surveillance can represent a burden to the patient due to the need for repeated imaging of the retroperitoneum and clinic visits. These may impact patient compliance which is crucial to an active surveillance strategy.

7.1.2.2 Adjuvant chemotherapy
A randomised controlled trial (RCT) comparing one cycle of carboplatin reaching area under curve of 7 mg/mL/min (AUC 7) with adjuvant RT, showed no difference in relapse-free rates (95% and 96%), time to recurrence and survival after a median follow-up of four years [114]. Adjuvant carboplatin (AUC 7) is therefore an alternative to RT or surveillance in CS I seminoma [114]. Time to relapse after Carboplatin may be longer than with active surveillance, as retrospective data reported a median time to relapse of nineteen months, with 15% of relapses occurring beyond three years. Most patients relapsing after adjuvant carboplatin can be successfully treated by standard, stage-adapted cisplatin-based chemotherapy [115].

7.1.2.3 Adjuvant radiotherapy
Radiotherapy should generally be reserved for a highly selective group of patients, who would be unsuitable for systemic chemotherapy in the event of relapse. This relates to the toxicity of RT, and specifically the long-term risk of non-germ cell malignancies in the radiation field [116-119].

7.1.2.4 Risk-adapted treatment
Tumour size > 4 cm and stromal rete testis invasion may stratify patients into low- and high-risk groups (please refer to chapter 4.3). Prospective trials based on these risk factors have demonstrated the feasibility of a risk-adapted approach [31-34, 120].

A trial of 897 patients offered surveillance to patients with no, or one risk factor, whilst patients with both risk factors were offered one dose of carboplatin, AUC 7 [34]. At a median follow-up of 5.6 years, in the patients without risk factors, 4% of surveillance patients relapsed, compared to 2% receiving adjuvant carboplatin. With one or both risk factors, 15.5% of surveillance patients relapsed compared to 9% receiving adjuvant carboplatin. Thirty-three per cent of relapses after adjuvant carboplatin occurred more than three years after orchidec- tomy with 3% occurring after five years [34].

7.1.2.5 Guidelines for the treatment of clinical stage I seminoma testis tumours

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with stage I seminoma have, in general, a low risk of recurrence</td>
<td>2a</td>
</tr>
<tr>
<td>Primary testicular tumour size correlates with the risk of relapse. Stromal rete testis invasion and other factors such as vascular invasion or epididymal invasion show a less reliable correlation with the risk of relapse.</td>
<td>2a</td>
</tr>
<tr>
<td>The evidence to guide adjuvant treatment decisions upon risk factors is, however, still too limited to justify routine use in clinical practice.</td>
<td>2a</td>
</tr>
<tr>
<td>Active surveillance is a feasible approach with conditional relapse risk in unselected series of between 12-20%.</td>
<td>2a</td>
</tr>
</tbody>
</table>
In patients without risk factors, the five-year relapse rate under surveillance is 4-6%, whereas in the presence of one or two risk factors, five-year relapse rate in contemporary surveillance series is 15-20%.

In non-randomised prospective series five-year relapse rates with adjuvant carboplatin are 2% in patients without risk factors and 9% in patients with one or both risk factors.

Adjuvant chemotherapy with one course carboplatin AUC 7 is not inferior to adjuvant radiotherapy when pathological risk factors are considered. Relapse rates with both adjuvant treatments are around 5%.

Adjuvant radiotherapy is associated with an increased risk of developing secondary non-germ cell malignancies.

Recommendations

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully inform the patient about all available management options, including surveillance or adjuvant therapy after orchidectomy, as well as treatment-specific recurrence rates and acute and long-term side effects.</td>
<td>Strong</td>
</tr>
<tr>
<td>Offer surveillance as the preferred management option if resources are available and the patient is compliant.</td>
<td>Strong</td>
</tr>
<tr>
<td>Offer one dose of carboplatin at area under curve (AUC) 7 if adjuvant chemotherapy is considered.</td>
<td>Strong</td>
</tr>
<tr>
<td>Do not perform adjuvant treatment in patients at very low-risk of recurrence (no risk factors).</td>
<td>Strong</td>
</tr>
<tr>
<td>Do not routinely perform adjuvant radiotherapy.</td>
<td>Strong</td>
</tr>
<tr>
<td>Adjuvant radiotherapy should be reserved only for highly selected patients not suitable for surveillance and with contraindication for chemotherapy.</td>
<td>Strong</td>
</tr>
</tbody>
</table>

Non-seminomatous germ cell tumours clinical stage I

Management options for non-seminomatous germ cell tumours clinical stage I (CS I-NSGCTs) include surveillance and adjuvant chemotherapy. Retroperitoneal lymph node dissection (RPLND) has a limited role in selected cases. Overall, approximately 70% of CS I-NSGCTs are cured with orchidectomy alone. In those with the high-risk feature of LVI, historical figures reported relapse in 50% compared to 15% in those without LVI. A thorough discussion should be undertaken with the patient outlining the potential advantages and disadvantages of treatment options, as well as individual co-morbidities, disease features, risk factors, specific circumstances, and personal preferences, to guide their treatment decision.

Surveillance

Surveillance for CS I-NSGCT entails a strict protocol of repeated cross-sectional imaging, monitoring of serum tumour markers and clinical assessment for the early identification of patients experiencing relapse who must receive salvage treatment (See Table 12).

The largest reports of surveillance indicate a cumulative relapse risk in about 30% of CS I-NSGCT (five-year conditional risk of relapse 42%, and 17% for high- and low-risk CS I-NSGCT, respectively) [108, 109]. Of these, 92% present within the first two years [108, 109, 121-123].

Retroperitoneal lymph node dissection

Since the introduction of cisplatin based chemotherapy the role of adjuvant RPLND in men with stage I GCT has decreased. According to data from high-volume and expert centres, primary RPLND is associated with a risk of relapse < 15% [124]. More recent data report a relapse rate of 10% in case of negative nodes (pathologic stage -PS – I) and < 30% in case of nodal metastases (PS II) [124-126], as a consequence possibly due to selection or stage migration. The few indications in stage I disease include men with teratoma with somatic malignant component, or patients who are not willing or suitable to undergo chemotherapy in case of recurrence, in particular in those when vascular invasion is present.

The presence of LVI, predominant embryonal carcinoma, primary pT stage and extranodal tumour extension histologically all appear associated with an increased risk of recurrence. The use of these further parameters has yet to be clearly defined in clinical practice [125-127]. With PS II, adjuvant chemotherapy comprising two cycles of (B)EP is the standard option. A recent publication supports the safety of surveillance alone, as about 80% are relapse free at two and five years and those with relapse can be rescued with standard chemotherapy [128, 129].

Strategies to reduce the morbidity of primary RPLND include nerve-sparing and minimally invasive approaches. In a multicentre setting, higher rates of in-field recurrences and complications have been reported with nerve-sparing RPLND [130, 131]. This suggests that primary RPLND, when indicated or chosen, should be performed...
by an experienced surgeon in a specialist centre. Minimally invasive (laparoscopic or robot-assisted) primary RPLND, appears feasible and safe (e.g., low-complication rate) in experienced hands. This must only be performed in high-volume RPLND centres with appropriate minimal-invasive surgery expertise [132-139].

Despite some advantages; including good efficacy; a less-demanding and costly follow-up due to the reduced need for cross-sectional imaging [140], RPLND for CS I-NSGCT has diminished its role in view of the high CSS rates of surveillance, the low relapse rates with adjuvant chemotherapy, and the lower reproducibility of primary RPLND on a large scale.

7.1.3.3 Adjuvant chemotherapy

Adjuvant chemotherapy has been evaluated with both one and two cycles of BEP in CS I-NSGCT. A prospective trial from 1996, as well as subsequent studies, used two cycles of BEP in high-risk patients (LVI present) [141-143]. In these series, including 200 patients, some with a median follow-up of nearly 7.9 years [141], a relapse rate of only 2.7% was reported, with minimal long-term toxicity. Two cycles of cisplatin-based adjuvant chemotherapy does not appear to adversely affect fertility or sexual activity [144].

Other studies have shown one cycle of adjuvant BEP results in similar very low recurrence rates (2-3%) [145, 146]. Reduction from two to one cycle of BEP improves the risk-benefit ratio of adjuvant chemotherapy considerably. A randomised phase III trial has also compared two-year recurrence free survival with adjuvant BEP x 1 to RPLND. Results favoured chemotherapy with recurrence free survival of 99.5% vs. 91% [131]. No clinically relevant differences in quality of life (QoL) were detected [147].

A community based prospective study of 490 unselected patients with CS I-NSGCT that received adjuvant single cycle BEP had five-year relapse rates of 3% and 2% for LVI+ and LV- patients, respectively. After a median follow-up of eight years these rates were sustained, no relapses were observed beyond 3.3 years [145, 146]. These numbers imply that > 90% of relapses are prevented by single cycle BEP which is now the recommended strategy if adjuvant chemotherapy is considered [145, 146]. The very-long term (> 20 years) side effects of adjuvant chemotherapy, particularly cardiovascular, are yet to be fully defined and this should be considered during decision-making [148, 149].

Limited data are available on outcomes with relapse after adjuvant BEP. A retrospective analysis indicated that about one third of these relapses were late and that the outcome may be slightly worse compared to those presenting with de novo metastatic disease [150].

7.1.3.4 Risk-adapted treatment

A risk-adapted strategy is an alternative to any single approach for patients with CS I-NSGCT. The advantages and disadvantages of treatment options must be discussed with patients in the context of their specific circumstances including disease risk factors, co-morbidities, and personal preference, as well as clinician recommendation in reaching a treatment decision. Lympho-vascular invasion is the strongest and most reproducible predictive factor for relapse and should be carefully outlined to the patient to assist in their decision-making.

Patients without LVI should be guided to consider surveillance, although some patients with significant co-morbidities or concerns regarding salvage chemotherapy with multicyle cisplatin-based chemotherapy may opt for adjuvant therapy. Those with LVI should have their high risk of relapse (up to 50%) highlighted and be guided to consider adjuvant management, and chemotherapy with BEP x 1 as the “preferred” option.

Some patients may wish to consider primary RPLND, although they need to be aware of the potential additional requirement of adjuvant chemotherapy if nodes contain active disease (pN1), as well as the 10% risk of systemic relapse, even if pN0, requiring subsequent chemotherapy treatment (BEP x 3).

7.1.3.5 Post-pubertal teratoma with somatic malignant component

A multi-institutional study analysing retrospective datasets of CS I patients with post-pubertal teratoma with somatic malignant component (TSMC) suggested these patients had inferior five-year OS of approximately 10% compared to other CS I-GCT patients. Furthermore, CS I TSMC cases undergoing primary RPPLND had a much higher proportion of nodal metastases (PS II) than expected (37.5%). Despite its limitations, this study provides the only evidence on this issue and supports primary RPLND in CS I-NSGCT with TSMC [151].

For patients presenting with CS I pure post-pubertal teratoma without a somatic malignant component, surveillance provides comparable survival outcomes to primary RPLND [152]. However, subtype discrepancies
in primary diagnostics of post-pubertal teratoma are not infrequent and consist in addition of subtype
and involve secondary somatic type of malignancy in 83% of cases. As such, central review by an expert
genitourinary pathologist is recommended when teratoma is diagnosed in the orchidectomy specimen [153].

7.1.3.6 Guidelines for the treatment of clinical stage I non-seminoma testis

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphovascular invasion increases the risk of relapse.</td>
<td>2a</td>
</tr>
<tr>
<td>The relapse rate with active surveillance is up to 50%, depending on LVI status.</td>
<td>2a</td>
</tr>
<tr>
<td>The relapse rate in patients who receive adjuvant chemotherapy with BEP (x 1 cycle) is up to 3%.</td>
<td>2a</td>
</tr>
<tr>
<td>Adjuvant chemotherapy with BEP is superior to adjuvant RPLND in terms of the risk of relapse.</td>
<td>1b</td>
</tr>
<tr>
<td>A risk-adapted approach, based on lymphovascular invasion is feasible.</td>
<td>2b</td>
</tr>
<tr>
<td>The acute toxicity of one cycle adjuvant BEP is low.</td>
<td>1b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inform patients about all management options after orchidectomy: surveillance, adjuvant chemotherapy, and retroperitoneal lymph node dissection, including treatment-specific recurrence rates as well as acute and long-term side effects.</td>
<td>Strong</td>
</tr>
<tr>
<td>Offer surveillance or risk-adapted treatment based on lymphovascular invasion (see below).</td>
<td>Strong</td>
</tr>
<tr>
<td>Discuss one course of cisplatin, etoposide, bleomycin as an adjuvant treatment alternative in patients with stage I non-seminomatous germ cell tumour if patients are not willing to undergo or comply with surveillance.</td>
<td>Strong</td>
</tr>
</tbody>
</table>

7.1.3.7 Risk-adapted treatment for clinical stage I non-seminomatous germ cell tumour based on vascular invasion

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage IA (pT1, no vascular invasion): low-risk</td>
<td></td>
</tr>
<tr>
<td>Offer surveillance if the patient is willing and able to comply.</td>
<td>Strong</td>
</tr>
<tr>
<td>Offer adjuvant chemotherapy with one course of cisplatin, etoposide, bleomycin (BEP) in low-risk patients not willing (or unsuitable) to undergo surveillance.</td>
<td>Strong</td>
</tr>
<tr>
<td>Stage IB (pT2-pT4): high-risk</td>
<td></td>
</tr>
<tr>
<td>Offer adjuvant chemotherapy with one course of BEP, or surveillance and discuss the advantages and disadvantages.</td>
<td>Strong</td>
</tr>
<tr>
<td>Offer surveillance to patients not willing to undergo adjuvant chemotherapy.</td>
<td>Strong</td>
</tr>
<tr>
<td>Offer nerve-sparing retroperitoneal lymph node dissection to highly selected patients only; those with contraindication to adjuvant chemotherapy and unwilling to accept surveillance.</td>
<td>Strong</td>
</tr>
<tr>
<td>Primary retroperitoneal lymph node dissection should be advised in men with post-pubertal teratoma.</td>
<td>Weak</td>
</tr>
</tbody>
</table>
Discuss all treatment options with individual patients, to allow them to make an informed decision as to their further care.

** In case of PS II, the rate of recurrence is higher and chemotherapy can be administered (max. 2 cycles).

Primary retroperitoneal lymph node dissection should be advised in men with post-pubertal teratoma with somatic malignant component.

BEP = cisplatin, etoposide, bleomycin; CS = clinical stage; IGCCCG = International Germ Cell Cancer Collaborative Group; NS = nerve-sparing; RLNPD = retroperitoneal lymph node dissection; VIP = etoposide, cisplatin, ifosfamide.

7.2 Metastatic germ cell tumours

The first-line treatment of metastatic GCTs depends on:
- the histology of the primary tumour;
- prognostic groups as defined by the IGCCCG (Table 3) [41];
- serum tumour marker decline at the end of the first cycle of chemotherapy in poor-prognosis patients.

In relapsed patients, a prognostic score has been developed including response to first-line therapy which can be used to estimate patient outcome following salvage chemotherapy [154].

7.2.1 Clinical stage I with (persistently) elevated serum tumour markers

If AFP or β-hCG increase or fail to normalise following orchidectomy, US examination of the contralateral testicle must be performed. If a contralateral tumour is excluded, repeat staging four weeks after orchidectomy is required [42].

Some patients may have stable but slightly elevated AFP or β-HCG and can be initially monitored. Treatment should be commenced if markers rise or when follow-up imaging demonstrates metastatic disease [42].
The treatment of true CS IS-NSGT should be the same as other metastatic non-seminoma. With this, five- and ten-year disease-free survival of 87% and 85%, respectively, have been reported [155].

7.2.2 Metastatic disease (stage IIA/B)

7.2.2.1 Stage IIA/B seminoma

Patients with enlarged retroperitoneal lymph nodes < 2 cm in greatest diameter and normal markers may be observed for six to eight weeks with repeat-staging imaging as these may be non-metastatic. Treatment should only be initiated if metastatic disease is unequivocal, based on biopsy, increasing nodal size/number, or subsequent marker rise [42, 155]. A special case are those patients who can undergo primary RPLND within a trial or institutional study (see below for further details).

Standard historical treatment of stage II A/B seminoma has been radiotherapy, with reported relapse rates of 9-24% [156, 157]. The radiation dose recommended in stage IIA and IIB is 30 Gy and 36 Gy, respectively, with the standard field encompassing the para-aortic (PA) and ipsilateral iliac nodes. With these, five-year relapse-free survival rates in stage IIA and IIB are 92% and 90%, respectively [156, 157]. Reduced dose to 27 Gy in stage IIA is associated with higher relapse rate of 11% [111].

Chemotherapy is the alternative option for stage II seminoma. The standard regimen in good-risk seminoma is BEP x 3 (Table 6) or EP x 4 if bleomycin is contraindicated [158]. There are no randomised studies comparing radiotherapy and chemotherapy. A meta-analysis of thirteen high-quality studies, comparing efficacy and toxicity of radiotherapy and chemotherapy showed that these appeared similarly effective in both stage IIA/IIB patients, although with a non-significant trend towards greater efficacy for chemotherapy (HR: 2.17) in stage IIB seminoma [159]. Acute toxicity was almost exclusively reported following chemotherapy, while long-term toxicity was more frequent following radiotherapy, mainly comprising bowel toxicity and secondary cancers, generally in the irradiated field [159]. Several series have shown an increased risk of developing a second solid cancer of 1.8-2.0 with radiotherapy [160]. Long term toxicities of chemotherapy including secondary cancers are also a concern [160].

Currently, cisplatin is the preferred option given the concerns with long term effects of radiotherapy and second malignancy. Radiation therapy stands as an equal option therapy, although best suited for patients who are elderly, have contraindications or difficulties tolerating systemic chemotherapy.

Primary RPLND has also been reported for CS II seminoma [161, 162]. Data from the National Cancer Data Base identified 155 men who underwent primary RPLND for CS II A/B reporting five-year OS of 92%. Specific trials are addressing the role of primary RPLND compared to standard options. These remain immature and insufficient to recommend primary RPLND in stage II seminoma.
7.2.2.2 Stage II A/B non-seminoma (NSGCT)

Treatment of stage II A/B non-seminoma (NSGCT) should be treated as outlined in figure 3.

Initial surveillance may be considered in patients with normal markers and equivocal lymph nodes (< 2 cm) and requires early re-evaluation at six weeks. A shrinking mass may be observed further. If the lesion progresses or fails to resolve it should be regarded and treated as CS II.

7.2.2.2.1 Marker Positive

Patients with elevated tumour markers and radiological stage IIA/B at diagnosis or relapse should be treated with chemotherapy as outlined in tables 7.1 and 7.2, and section 7.2.3.1 based on IGCCCG risk group. Most patients will be good prognosis for whom BEP x 3 is most appropriate or EP x 4 if there are concerns with the use of bleomycin.

Primary RPLND for CS IIA/B disease with elevated markers is not recommended outside a specific study in a referral centre [163, 164].

7.2.2.2.2 Marker Negative

With CS IIA NSGCT disease and normal or normalized tumour markers, nerve-sparing RPLND performed by an experienced surgeon in a specialized center is the recommended initial treatment. Patients may be downstaged to PSI in up to 20% of cases and require no further treatment. Patients with post-pubertal teratoma alone will avoid unnecessary chemotherapy as surgery alone is curative.

The oncological outcomes after RPLND in CSII NSGCT have been evaluated in a recent systematic review [165]. Of the included studies the majority were retrospective and, in these studies, the included patients differed substantially in histopathology of the testicular primary, size and number of retroperitoneal lymph nodes resected, surgical templates, and the use of adjuvant chemotherapy. Among men with marker negative CSII NSGCT, PS2 2 is confirmed in 80%. Without adjuvant chemotherapy 12–40% recurred compared to 0–4% in those who received adjuvant chemotherapy.
These findings align with large single centre reports of outcomes following RPLND alone for PSII NSGCT with active disease [121, 128, 129, 166]. These studies reported five year relapse of less than 30%, with the majority occurring outside the retroperitoneum requiring systemic chemotherapy according to risk group.

Adjuvant chemotherapy may be discussed with the patient to reduce the risk of relapse in this setting. Key issues include risk factors for relapse (as positive lymph node-ratio), the risk of overtreatment in up to 70% of cases and the need of rigorous follow-up. When adjuvant chemotherapy is chosen, standard treatment is BEP for a maximum of two cycles, although a recent single-centre study of 150 patients undergoing two cycles EP following RPLND and PS II disease reported a ten-year relapse-free survival of 98% [167].

When a possible marker negative stage II A/B relapse is diagnosed more than two years after initial diagnosis, CT- or US-guided biopsy is advised to confirm the diagnosis of GCT relapse before initiating treatment. An RPLND is the alternative option and should be performed if biopsy is not feasible or does not provide confirmation of active disease. There is insufficient published data on FDG-PET scans in this situation to provide any recommendation.

Figure 3: Treatment options in patients with non-seminoma clinical stage IIA

* Most of the patients will be good prognostic group (BEP x3 or PE x4).
** In case of PS II A/B patient can be followed-up or receive adjuvant chemotherapy (maximum of 2 cycles).
BEP = cisplatin, etoposide, bleomycin; NS = nerve-sparing; RPLND = retroperitoneal lymph node dissection; PS = pathological stage; PD = progressive disease; NC = no change.

7.2.3 Metastatic disease (stage II C and III)
7.2.3.1 Primary chemotherapy
7.2.3.1.1 Good-prognosis risk group - seminomatous germ cell tumour
For metastatic seminoma, a cisplatin-based regimen should be used [168]. Cisplatin-based combination chemotherapy has shown superior efficacy over carboplatin-based regimens [168]. The standard regimen in good-risk seminoma is three, twenty-one day cycles of BEP (Table 6). Alternatively, etoposide, cisplatin (EP) x 4 may be considered especially when bleomycin is contraindicated [169]. This achieves similar response rates but may have a slightly higher risk of relapse [170].

Post-chemotherapy masses should be managed as described in Section 7.5.2.

7.2.3.1.2 Intermediate-prognosis risk group - seminomatous germ cell tumour
For patients with intermediate-risk seminoma, BEP x 4 is the standard regimen. If bleomycin is contraindicated bleomycin, etoposide, cisplatin, ifosfamide (VIP) should be given. No RCT has focused specifically on this rare
group of patients (see Table 3).

7.2.3.1.3 Good-prognosis risk group - non-seminomatous germ cell tumour
The standard regimen in good-risk non-seminoma is BEP x 3 (Table 6) [41, 169].

An RCT supports the equivalence of three- or five-day regimes with three or four cycles of BEP for projected two-year PFS. Three-day regimes are associated with increased toxicity [171, 172]. Based on these data, the BEP x 3 as a five-day regimen is strongly recommended in the good-prognosis risk group.

Table 6: Cisplatin, etoposide, bleomycin (BEP) regimen (interval 21 days)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
<th>Duration of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisplatin</td>
<td>20 mg/m²</td>
<td>Days 1-5*</td>
</tr>
<tr>
<td>Etoposide</td>
<td>100 mg/m²</td>
<td>Days 1-5</td>
</tr>
<tr>
<td>Bleomycin</td>
<td>30 mg</td>
<td>Days 1, 8, 15</td>
</tr>
</tbody>
</table>

*Plus, hydration.

Two RCTs support the superiority of BEP X 3 over other regimes or schedule intensities [158, 173]. A further RCT has suggested that when EP is used, the mortality rate is twice that with BEP, although the difference did not reach statistical significance [158].

Patients with a clear contraindication to bleomycin may receive EP x 4 [171]. In all other cases omission of bleomycin is not recommended.

Chemotherapy should be given without reduction of the doses at 21-day intervals. Cytopenias on day fifteen of BEP are common although bleomycin should still be given on day fifteen irrespective of neutropenia or thrombocytopenia. Delaying a chemotherapy cycle is justified only in the presence of severe granulocytopenia < 500/mm³ or thrombocytopenia < 50,000/IU. Mild neutropenia without signs of infection alone is not a reason to delay the next cycle. As Granulocyte colony-stimulating factor (G-CSF) lowers the risk of neutropenic sepsis, its up-front use may be considered in selected patients at risk, even though it is not a standard prophylaxis with BEP. Granulocyte colony-stimulating factor, must be given if neutropenic infections occur during or after chemotherapy, or when treatment is delayed due to myelotoxicity [174].

7.2.3.1.4 Intermediate-prognosis risk group - non-seminomatous germ cell tumour
The standard regimen is BEP x 4 [175]. Four cycles of VIP has similar efficacy, but is more myelotoxic [176]. Four cycles of VIP including primary G-CSF prophylaxis should be applied in patients with contraindications to bleomycin.

7.2.3.1.5 Poor-prognosis risk group - non-seminomatous germ cell tumour
The standard regimen is four cycles of BEP. Four cycles of VIP have similar efficacy, but is more myelotoxic [176]. Several RCTs have shown no advantage in OS for upfront high-dose chemotherapy (HDCT) in the overall poor-prognosis patient group [177, 178].

Serum tumour marker decline is the only prospectively confirmed predictor for response to cisplatin chemotherapy in metastatic germ cell tumour patients. Patients with inadequate tumour marker decline after the first or second cycle represent a prognostically inferior subgroup [178, 179]. There are several ways to calculate tumour marker decline kinetics with an example available at: https://www.gustaveroussy.fr/calculation-tumor/NSGCT.html.

An RCT demonstrated improved PFS when intensifying treatment with dose-dense chemotherapy in patients with an early unfavourable tumour marker decline [180]. The trial was not powered to estimate OS differences. Based on the results from this trial, patients with an unfavourable tumour marker decline after BEP x 1 can be switched to a more intensive (dose-dense) chemotherapy regimen [180]. Additional patient groups with an unfavourable prognosis on standard treatment are those with primary mediastinal non-seminoma and patients with brain metastases at initial diagnosis [107, 181]. These may also be candidates for upfront intensified treatment, preferably in a prospective study.

In RCTs, primary HDCT with subsequent autologous stem cell transplantation has not shown an OS benefit in the poor-prognosis patient population [177, 178]. Selected patients, however, may derive a benefit from primary
HDCT with three consecutive cycles of high-dose VIP. A specific group are those with primary mediastinal non-seminomas for whom prognosis with relapse is extremely poor [182]. Better outcomes are reported for patients with intermediate or poor prognosis when treated at high-volume centres, where optimal multidisciplinary treatment strategies can be defined. [183-185]. Due to unfavourable survival poor-prognosis patients should be treated in ongoing prospective trials or registries, whenever possible.

There are no general recommendations for treatment modifications for patients with poor performance status (Karnofsky < 50%) or extended liver infiltration (> 50%), although two small patient series indicate that an initial cycle of dose-reduced therapy may reduce acute mortality without compromising long-term outcomes. The number of subsequent cycles of full-dose therapy should, however, not be reduced after an initial low-dose induction cycle [184, 186].

Patients with widespread pulmonary metastases are at risk for pulmonary haemorrhage and subsequent acute respiratory distress syndrome (ARDS) with induction chemotherapy. To reduce this risk, primary cytoreductive induction chemotherapy with EP over two to three days should be administered, followed by the first cycle of standard chemotherapy when the risk of ARDS has passed (typically after ten days) [184]. Bleomycin should be omitted in patients where subsequent lung surgery for residual mass resection is likely.

Table 7: Level of evidence for prognostic group and treatment

<table>
<thead>
<tr>
<th>Prognostic group IGCCCG</th>
<th>Treatment</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good (SGCT and NSGCT)</td>
<td>BEP x 3 or EP x 4</td>
<td>1b</td>
</tr>
<tr>
<td>Intermediate (SGCT and NSGCT)</td>
<td>BEP x 4 or VIP x 4</td>
<td>1b</td>
</tr>
<tr>
<td>Poor (NSGCT)</td>
<td>BEP x 4 or VIP x 4 if favourable marker decline</td>
<td>1b</td>
</tr>
<tr>
<td></td>
<td>Dose escalation in selected cases with inadequate serum tumour marker decline</td>
<td>1b</td>
</tr>
</tbody>
</table>

7.2.3.1.6 Prevention of thromboembolism events during chemotherapy

Some RCTs have assessed the risks and benefits of thromboprophylaxis in ambulatory cancer patients receiving chemotherapy and report a relative risk reduction of 30-60% in venous thromboembolic events (VTE) but a doubling of bleeding risk [187-190]. Based on these results, the most recent ASCO Clinical Practice Guideline Update recommends thromboprophylaxis with apixaban, rivaroxaban, or low molecular weight heparin (LMWH) to cancer patients with a high risk of VTE and low risk of bleeding [191]. Metastatic germ cell tumour (mGCT) patients were under-represented in all trials; thus, it is not clear whether this recommendation applies to this group although retrospective data suggests a similar efficacy of VTE prophylaxis [192].

The EAU Guideline panel has discussed a recommendation regarding thromboprophylaxis. All members agreed that men with mGCTs undergoing chemotherapy are at high-risk for VTE, and with the exception of those with choriocarcinoma and high volume extra-peritoneal disease, are at low-risk of bleeding. Given the apparent high VTE incidence and only non-validated VTE risk factors, the panel preferences were divided between those panel members that favoured thromboprophylaxis in all men and those panel members that restricted thromboprophylaxis to men with certain risk factors. Additionally, the majority of the panel agreed that a central venous-access device should be avoided whenever possible as this represents the only modifiable risk factor, which remained significantly associated with VTE in a multivariable risk-prediction model [193, 194].

*For more information regarding the prevention of thromboembolism events during chemotherapy, please see appendix 2, available online https://uroweb.org/guidelines/testicular-cancer/publications-appendices.

7.2.3.1.7 Guidelines for the Prevention of thromboembolism events during chemotherapy

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thromboembolic events occur more frequently in male patients with GCTs receiving chemotherapy than in young males under chemotherapy for other cancers.</td>
<td>2b</td>
</tr>
<tr>
<td>Retrospective studies have identified multiple risk factors for the development of thromboembolic events including increasing stage, size of retroperitoneal lymph nodes at different cut-offs, Khorana score > 3 and indwelling vascular access device (only modifiable risk factor).</td>
<td>2b</td>
</tr>
</tbody>
</table>
Recommendations

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance the individual patients’ potential benefits and risks of thromboprophylaxis during first-line chemotherapy in men with metastatic germ cell tumours.</td>
<td>Weak</td>
</tr>
<tr>
<td>Avoid use of central venous-access devices during first-line chemotherapy whenever possible.</td>
<td>Weak</td>
</tr>
</tbody>
</table>

7.3 Treatment evaluation and further treatment

7.3.1 Treatment evaluation

Response to treatment should be assessed after the initial induction cycle by repeat imaging and/or re-evaluation of tumour markers. With marker decline and/or radiologically regressing or stable tumour features, the planned chemotherapy should be completed [194, 195]. If markers decline, but metastases progress on imaging, induction therapy must be completed [196]. If markers have normalised and masses with features of post-pubertal teratoma progress early surgical resection should be considered.

Slow marker-decline with the initial one to two cycles of chemotherapy warrants consideration for dose intensification (see section 7.2.3.1.5 re https://www.gustaveroussy.fr/calculation_tumor/NSGCT.html).

Following completion of treatment, cases with a low-level β-hCG plateau should be observed to determine whether complete normalisation subsequently occurs. In patients with a low plateau serum AFP level after chemotherapy, removal of residual masses should be undertaken, with subsequent AFP monitoring. Salvage chemotherapy is only indicated for documented marker progression [196, 197].

7.3.2 Residual tumour resection

7.3.2.1 Seminoma

A residual mass of seminoma should initially be monitored with imaging and tumour markers [198-200]. As FDG-PET has a high NPV, in patients with residual masses > 3 cm in largest diameter, this should be considered in order to provide more information on disease viability [201-203]. It should not be performed until at least two months after completion of chemotherapy, as inflammation and the desmoplastic reaction induced by chemotherapy may result in a false positive result [52]. The NPV for active disease is > 90% which can be reassuring [201, 202]. In contrast PPV ranges from 23-69% and thus caution is advised on initiating active therapy driven only by positive findings on FDG-PET-CT [204].

When a post-chemotherapy mass remains positive at reclassification with FDG-PET with no volume increase, repeat FDG-PET should be performed six weeks later. A recent publication shows a low PPV for vital tumours in residual lesions (generally > 3 cm) after chemotherapy in metastatic seminoma (11-38% depending on subgroup). Therefore, caution is recommended with FDG-PET as a single parameter to drive clinical decisions in a persistent mass [204]. In patients with progressive disease on radiological criteria (i.e., a growing mass which enhances with CECT or is FDG-PET avid), salvage therapy is indicated [205-207].

Patients with persistently high and/or progressing β-hCG elevation after first-line chemotherapy should proceed to salvage chemotherapy. Progressing patients without β-hCG progression should undergo histological verification (e.g., by percutaneous or surgical biopsy) before salvage chemotherapy is given. When RPLND is indicated, this should be performed in referral centres, as residual seminoma masses may be extremely difficult to remove due to intense fibrosis [206].

7.3.2.2 Non-seminoma

Following first-line BEP only 6-10% of residual masses contain active cancer, 50% post-pubertal teratoma, and 40% necrotic-fibrotic tissue only [208]. Restaging patients following chemotherapy with FDG-PET is not indicated [50-52]. With complete radiological remission, RPLND is not indicated [209, 210].

Usual timing for restaging is three to four weeks after the beginning of the last cycle. No diagnostic or risk calculator can accurately predict histology of the residual masses. Thus, resection is mandatory in all patients with a residual mass > 1 cm in greatest diameter at cross-sectional CECT imaging until novel predictive models are externally validated [211-214]. Surgery, when indicated, should be performed within six to eight weeks after the last chemotherapy cycle.

The role of surgery with residual retroperitoneal lesions < 1 cm is uncertain. It is difficult to distinguish between a true residual node below 10 mm and a complete remission, and many authors consider these situations as equivalent. Residuals containing cancer or teratoma are possible, but the vast majority of patients have fibro-
necrotic tissue only [215]. Whilst post-chemotherapy RPLND with residuals < 10 mm or complete remission is an option [216], the alternative option is close surveillance with recurrence risk of 6-9% depending on the follow-up duration [209, 210]. In the series with the longest follow-up of 15.5 years, twelve (9%) of 141 patients relapsed despite a complete response following primary treatment [210]. Eight of the twelve relapsing patients were cured with subsequent treatment. These cases should be discussed on individual basis considering the orientation and expectations of the patient.

Residual masses after salvage chemotherapy or HDCT in first or subsequent salvage situations have a greater risk of active disease [217]. Surgery is therefore indicated even with residual masses < 1 cm [209, 210].

When resection is indicated, bilateral nerve sparing RPLND is the standard option. Ipsilateral template resection avoids contralateral nerve dissection and may be considered for residuals with a diameter < 5 cm [218], as well as unilateral lymph node metastases on pre- and post-chemotherapy CT scans, left-sided tumours only require para-aortic resection whereas right-side tumours need paracaval and inter-aortocaval resection down to the iliac arteries [219, 220]. Mapping studies indicate a potential risk of contralateral disease with this approach [221]. The mere resection of the residual tumour (so called lumpectomy) should not be performed [210, 214, 215, 217, 218, 220, 222].

Laparoscopic or robotic RPLND may yield comparable outcomes to open procedures in selected cases with low-volume residual disease and when undertaken by very-experienced surgeons. This should only be considered in specialist TC centres with expertise in open RPLND and minimally invasive surgery to ensure appropriate case selection. In this setting, up to 30% of post-Chemotherapy RPLND have been reported via a laparoscopic approach [223-225]. Experience with robot-assisted laparoscopic RPLND, and specifically long term outcome remains limited [226]. Atypical recurrences have been reported, and occur more often with this approach [133].

7.3.3 Sequencing of surgery in the case of multiple sites

In general, surgery should commence at the site with the highest volume of residual disease. The histology of the mass diverges in different organ sites [211]. In cases of residual retroperitoneal and lung masses, the presence of fibro-necrotic tissue in the retroperitoneum is associated with a probability of as high as 90%, that lung masses contain the same histology [227]. When pathologic examination of the lesions from the initial side show complete necrosis observation may be considered when there are multiple contralateral tumours for whom resection may be challenging. Discordant histology between lung sites, however, may occur in up to 20% of cases and thus patients in this situation should be closely monitored with reconsideration of surgery or biopsy if radiological features change [228, 229].

7.3.3.1 Quality and intensity of surgery

Resection of visceral structures and/or major vessels, requiring vascular reconstruction/replacement may be required to achieve radical resection and patients undergoing adjunctive complex surgery have a greater risk of complications [230, 231]. In patients with intermediate- or poor-risk and residual disease > 5 cm, the probability of vascular procedures is as high as 20% [232]. These cases must therefore be referred to specialised centres capable of interdisciplinary surgery (hepatic resections, vessel replacement, spinal neurosurgery, thoracic surgery). Even with centralisation of treatment, the median number of RPLNDs performed per surgeon/year in the U.K. is six [233]. Nevertheless, patients treated within such centres benefit from a significant reduction in peri-operative mortality from 6-0.8% [234]. In addition, specialised urologic surgeons are capable of reducing the local recurrence rate from 16-3% with a higher rate of complete resections [235].

7.3.3.2 Salvage and desperation surgery

Surgery of resectable disease after salvage treatment remains a potentially curative option in patients with any residual mass following salvage chemotherapy. Survival after surgery and first salvage chemotherapy improved by 70% at ten years, following taxane-containing regimens [236]. Even with extensive salvage chemotherapy, surgery remains a fundamental tool to achieve durable complete remissions in up to 20% of patients [237, 238].

Desperation surgery refers to resection of non-responsive or progressive (e.g., rising markers) disease following salvage chemotherapy. When the disease is resectable, a significant proportion of these patients can be rendered disease-free in the long term [239].

7.3.3.3 Consolidation chemotherapy after secondary surgery

After resection of necrosis or post-pubertal teratoma, no further treatment is required. With incomplete resection of viable cancer, two adjuvant cycles of conventionally dosed cisplatin-based chemotherapy may...
be given in certain subgroups (e.g., poor-prognosis patients) [222]. Caution is required with cumulative doses of bleomycin. With complete resection of active disease, comprising < 10% of the total volume of the mass, particularly in patients who initially had a good-prognosis based on IGCCCG criteria, the relapse rate is very low and adjuvant chemotherapy is not beneficial in preventing further relapse [240]. The prognosis is worse if malignant disease is present in masses resected after second- and third-line chemotherapy, although further chemotherapy is not indicated [241].

7.3.4 Systemic salvage treatment for relapse or refractory disease

Cisplatin combination salvage chemotherapy will result in long-term remissions in approximately 50% of patients who relapse after first-line chemotherapy. These results are highly dependent on several prognostic factors [242]. The regimens of choice are four cycles of a three-agent regimen including cisplatin and ifosfamide plus a third drug: VIP, paclitaxel (TIP), or potentially gemcitabine (GIP) (Table 8) [243, 244]. No RCT has compared these regimens. Due to their potential risk of lethal haematological toxicity, these regimens should be used with G-CSF support and by well-trained oncologists.

Table 8: Standard VIP, TIP and GIP salvage chemotherapy (interval 21 days)

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Chemotherapy agents</th>
<th>Dosage</th>
<th>Duration of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIP</td>
<td>Cisplatin</td>
<td>20 mg/m²</td>
<td>Days 1-5</td>
</tr>
<tr>
<td></td>
<td>Etoposide</td>
<td>75-100 mg/m²</td>
<td>Days 1-5</td>
</tr>
<tr>
<td></td>
<td>Ifosfamide</td>
<td>1.2 g/m²</td>
<td>Days 1-5</td>
</tr>
<tr>
<td>TIP</td>
<td>Paclitaxel</td>
<td>250 mg/m² xx</td>
<td>24 hour continuous infusion day 1</td>
</tr>
<tr>
<td></td>
<td>Ifosfamide</td>
<td>1.5 g/m²</td>
<td>Days 2-5</td>
</tr>
<tr>
<td></td>
<td>Cisplatin</td>
<td>25 mg/m²</td>
<td>Days 2-5</td>
</tr>
<tr>
<td></td>
<td>Alternative schedule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paclitaxel</td>
<td>175 mg/m²</td>
<td>Day 1, 3 hour infusion</td>
</tr>
<tr>
<td></td>
<td>Ifosfamide</td>
<td>1.2 g/m²</td>
<td>Days 1-5</td>
</tr>
<tr>
<td></td>
<td>Cisplatin*</td>
<td>20 mg/m²</td>
<td>Days 1-5</td>
</tr>
<tr>
<td>GIP</td>
<td>Gemcitabine</td>
<td>1000 mg/m²</td>
<td>Day 1 + 5</td>
</tr>
<tr>
<td></td>
<td>Ifosfamide</td>
<td>1200 mg/m²</td>
<td>Days 1-5</td>
</tr>
<tr>
<td></td>
<td>Cisplatin</td>
<td>20 mg/m²</td>
<td>Days 1-5</td>
</tr>
</tbody>
</table>

xx An MRC schedule uses paclitaxel at 175 mg/m² in a 3 hour infusion [244].

A retrospective analysis by the International Prognostic Factors Study Group (IPFSG) evaluated the risk of relapse in patients in whom this occurred after at least three cisplatin cycles and subsequent cisplatin conventional-dose or carboplatin-based high-dose salvage chemotherapy [154]. Seven variables: histology, primary tumour location, response, progression-free interval after first-line treatment and level of AFP, hCG and the presence of liver, bone or brain metastasis at salvage treatment, were identified as independent prognostic variables of relapse after initial cisplatin chemotherapy [154]. Using these factors, five risk-groups: very low-risk = -1 points; low-risk = 0 points; intermediate-risk = 1-2 points; high-risk = 3-4 points; and very high-risk > 5 points; were identified with significant differences in PFS and OS. Table 9 illustrates these five risk groups and the corresponding two-year PFS and three-year OS rates [154]. Several recent trials have validated this scoring system [245-248]. As in first-line therapy, the prognostic impact of tumour marker decline applies in the salvage setting [249]. While progression to induction chemotherapy was negative for OS, prior use of paclitaxel was not significantly associated with a negative outcome [250].

A secondary analysis of the IPFSG cohort (n = 1,600 patients) showed a 10-15% improvement in OS in all prognostic subgroups when treated with high-dose salvage therapy compared to standard dose therapy. This is being evaluated in an RCT of HDCT vs. conventional dose chemotherapy in patients with first-line relapse, which is currently underway (Tiger trial). When HDCT is used as a salvage treatment, sequential treatment cycles of high-dose carboplatin and etoposide (HD-CE) should be preferred to a single high-dose regimen as the former is associated with less toxicity-related deaths [245]. A recent SR confirmed the superiority of using at least two high-dose cycles in the salvage setting over a single high-dose cycle [251]. It is clearly of the utmost importance that these rare patients with relapse are treated within clinical trials and at specialised centres.
Table 9: The International Prognostic Factors Study Group Score for seminoma and non-seminoma that relapse after cisplatin-based first-line chemotherapy [189]

<table>
<thead>
<tr>
<th>Points</th>
<th>Variable</th>
<th>Seminoma</th>
<th>Non-seminoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>Histology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Points -1 0 1 2 3
Variable Histology Seminoma Non-seminoma
Primary site Gonadal Retroperitoneal Mediastinal
Response CR/PPrm- PPrm+/SD PD
PFI > 3 months ≤ 3 months
AFP salvage Normal < 1000 1000
hCG salvage < 1000 1000
LBB No Yes

AFP = alpha-fetoprotein; CR = complete remission; PPrm- = partial remission, negative markers; PPrm+ = partial remission, positive markers; hCG = human chorionic gonadotrophin; LBB = liver, bone, brain metastases; PD = progressive disease; PFI = progression-free interval; SD = stable disease.

Table 10: Progression-free survival and overall survival estimates for all patients according to IGCCCG prognostic score for seminoma and non-seminoma that relapse after cisplatin-based first-line chemotherapy [190]

<table>
<thead>
<tr>
<th>Score (n = 1,435)</th>
<th>N</th>
<th>%</th>
<th>HR</th>
<th>2-years PFS (%)</th>
<th>3-year OS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Low</td>
<td>76</td>
<td>5.30</td>
<td>1</td>
<td>75.1</td>
<td>77.0</td>
</tr>
<tr>
<td>Low</td>
<td>257</td>
<td>17.9</td>
<td>2.07</td>
<td>52.6</td>
<td>69.0</td>
</tr>
<tr>
<td>Intermediate</td>
<td>646</td>
<td>45.0</td>
<td>2.88</td>
<td>42.8</td>
<td>57.3</td>
</tr>
<tr>
<td>High</td>
<td>351</td>
<td>24.5</td>
<td>4.81</td>
<td>26.4</td>
<td>31.7</td>
</tr>
<tr>
<td>Very High</td>
<td>105</td>
<td>7.3</td>
<td>8.95</td>
<td>11.5</td>
<td>14.7</td>
</tr>
<tr>
<td>Missing</td>
<td>159</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

HR = hazard ratio; PFS = progression-free survival; n = number of patients; OS = overall survival.

7.3.5 Second relapse
No RCTs have been reported for patients with second relapse and overall conventional therapy does not appear effective. For patients who have received two series of conventionally dosed therapy (first line and first-salvage), HDCT with autologous stem cell support should be used [246]. With this the prospect of cure is only 20-25%.

Patients relapsing within four to eight weeks after platinum-based therapy, or who are progressing despite platinum-based therapy, as well as those relapsing shortly after HDCT, are considered as cisplatin refractory. Combinations of gemcitabine and oxaliplatin or the triple combination of gemcitabine, oxaliplatin and paclitaxel have resulted in response rates of 25-45% in this setting. Cisplatin re-challenge in association with gemcitabine and paclitaxel may be considered in patients with adequate renal function [252]. For patients with a second relapse not responding to the combination of oxaliplatin and gemcitabine or the triple combination, inclusion in clinical trials is encouraged.

Patients with a good response undergoing subsequent resection of residual tumour lesions may still have a 15-20% chance of long-term cure [237, 253].

Various targeted agents have generally failed in refractory disease, including immune checkpoint inhibitors [245-251, 254]. Trials combining PD1/PDL-1 and CTLA4 inhibitors are ongoing; however, even for those combinations early results are not encouraging.

7.3.5.1 Late relapse (more than two years after end of first-line treatment)
Late relapse is defined as recurrence more than two years after completion of successful primary treatment of metastatic TC [203]. According to a pooled analysis, this occurs in 1.4% and 3.2% of seminoma and non-seminoma patients, respectively [255].

Based on a population-based study all late-relapsing seminoma patients have viable GCT [256]. These can be treated with chemotherapy and radiotherapy.
In contrast, patients with late-relapsing NSGCT should undergo surgical resection when feasible, alone or in combination with chemotherapy. Some patients, including those with rapidly rising β-hCG, may benefit from induction salvage chemotherapy with subsequent reconsideration of surgery for resection of persisting residual masses [163]. In general, however, surgery represents the mainstay of treatment and it should be performed in most patients when feasible irrespective of the level of their tumour markers, in order to completely resect all viable GCT post-pubertal teratoma or TSTM [163, 257]. Survival strongly relates to the histology of the recurrent lesions rather than that of the initial disease. If not completely resectable, biopsies should be obtained for histological evaluation to direct salvage chemotherapy based on the tumour phenotype. Review by an experienced pathologist is critical to avoid misinterpretation of the therapeutic morphological changes that occur with the treatment of GCT [258]. If the patient responds to salvage chemotherapy, secondary surgery should then be undertaken if feasible. With unresectable, but localised refractory disease, stereotactic or conventional radiotherapy may be considered. To avoid excess mortality, late relapses should be treated only at centres experienced in managing such patients [259].

7.3.6 Treatment of brain metastases

Brain metastases occur in the context of initial metastatic disease, systemic relapse and rarely as an isolated site of relapse. Long-term survival of patients presenting with brain metastases at diagnosis is poor (30-50%) and even poorer when a site of recurrent disease (five-year survival-rate is 2-5%) [260, 261]. A large international database comprising 523 patients reported 48% three-year OS rates in patients with brain metastases at initial diagnosis and 27% three-year OS rates for patients with brain metastases at relapse [47].

Chemotherapy as initial treatment proved effective in a first-line setting (potentially even as dose-intensified therapy upfront) with data also supporting the use of multimodal treatment particularly in relapsed disease [47]. Consolidation RT, even with total response after chemotherapy, should therefore be used in patients with brain metastases at relapse, but must be carefully discussed in a first-line setting [262]. Surgery may be considered in cases with a persistent solitary metastasis, depending on the systemic disease status, histology of the primary tumour and the location of the metastasis.

7.3.6.1 Guidelines for the treatment of metastatic testicular germ cell tumours

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the NSGCT good-prognosis-risk group (IGCCG), BEP x 3 is superior to other chemotherapy regimens. Toxicity is lower when treatment is delivered in five-day regimes rather than three-day regimes.</td>
<td>1b</td>
</tr>
<tr>
<td>In the NSGCT intermediate-prognosis-risk group (IGCCCG) BEP x 4 is the standard treatment of choice with a five-year survival of 89% in contemporary series.</td>
<td>1b</td>
</tr>
<tr>
<td>In pathological stage II NSGCT disease, RPLND performed in specialised centres without adjuvant chemotherapy results in 73-81% of long-lasting remissions.</td>
<td>2b</td>
</tr>
<tr>
<td>In patients with a poor-prognosis metastatic NSGCT (defined by IGCCCG), treatment with BEP x 4, results in a five-year PFS of 67%. There is no advantage in OS for high-dose chemotherapy.</td>
<td>1b</td>
</tr>
<tr>
<td>Patients with a poor-prognosis metastatic NSGCT and early unfavourable tumour marker decline may benefit from intensification of treatment with dose-dense chemotherapy, with improvement of PFS despite no benefit being observed for OS.</td>
<td>1b</td>
</tr>
<tr>
<td>Following first-line BEP chemotherapy, 6-10% of NSGCT residual masses contain active cancer, 50% have post-pubertal teratoma, and 40% comprise of necrotic-fibrotic tissue only. Figures regarding persistence of residual active are slightly lower in post chemotherapy residual masses < 1 cm. Currently there is no accurate prognostication method of histology.</td>
<td>2b</td>
</tr>
<tr>
<td>In CS IIA/B seminoma radiotherapy and chemotherapy treatment show similar effectiveness, with a non-significant trend towards greater efficacy of chemotherapy in CS IIB. However, risk of second malignancies and cardiovascular events is higher after radiotherapy.</td>
<td>2a</td>
</tr>
<tr>
<td>In metastatic seminoma stage > IIC, primary chemotherapy with BEP, tailored to the IGCCCG risk group, has proven superior to Carboplatin based chemotherapy.</td>
<td>1b</td>
</tr>
<tr>
<td>Fluorodeoxyglucose-positron emission tomography has a high NPV in patients with post-chemotherapy seminoma residual masses (> 3 cm) when performed more than two months after chemotherapy.</td>
<td>2b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Strength rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treat low-volume non-seminomatous germ cell tumour (NSGCT) stage II/A/B with elevated markers like metastatic good- or intermediate-prognosis risk group IGCCCG with three or four cycles of cisplatin, etoposide, bleomycin (BEP).</td>
<td>Strong</td>
</tr>
</tbody>
</table>
Nerve-sparing retroperitoneal lymph node dissection when performed by an experienced surgeon in a specialised centre is the recommended initial treatment in clinical stage (CS) IIA NSGCT disease without elevated tumour markers.

<table>
<thead>
<tr>
<th>Action</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeat staging after six weeks before making a final decision on further management should be considered in patients with small volume (CS IIA < 2 cm) marker-negative NSGCT.</td>
<td>Weak</td>
</tr>
<tr>
<td>Treat metastatic NSGCT (stage > IIC) with an intermediate prognosis with four cycles of standard BEP.</td>
<td>Strong</td>
</tr>
<tr>
<td>In metastatic NSGCT with a poor-prognosis, treat with one cycle of BEP (or cisplatin, etoposide and ifosfamide [VIP], in cases with pulmonary dysfunction), followed by tumour marker assessment after three weeks. Continue the same schedule up to a total of four cycles with favourable marker decline. With unfavourable decline, initiate chemotherapy intensification.</td>
<td>Weak</td>
</tr>
<tr>
<td>Perform surgical resection of visible (> 1 cm) residual masses after chemotherapy for NSGCT when serum levels of tumour markers are normal or normalising.</td>
<td>Strong</td>
</tr>
<tr>
<td>Initially offer cisplatin chemotherapy according to IGCCCG prognosis groups, or alternatively radiotherapy to seminoma patients with stage II A/B and, inform the patient of potential long-term side effects of both treatment options.</td>
<td>Weak</td>
</tr>
<tr>
<td>Treat seminoma stage IIC and higher, with primary chemotherapy according to IGCCCG classification (BEP x 3 in good-prognosis and BEP x 4 in intermediate prognosis).</td>
<td>Strong</td>
</tr>
</tbody>
</table>

8. FOLLOW-UP AFTER CURATIVE THERAPY

8.1 Minimal recommendations for follow-up

Based on different risks of relapse depending on diagnosis and initial treatment, three major follow-up groups can be defined:

1. patients with seminoma stage I;
2. patients with non-seminoma stage I on active surveillance;
3. all patients having received either adjuvant treatment or curative chemotherapy for “good”- and intermediate-prognosis metastatic disease (according to the IGCCCG) achieving a complete remission with, or without, surgery (for seminoma this includes residual lesions < 3 cm, or residual lesions > 3 cm that are FDG-PET-negative).

It is important to note that patients not achieving a complete remission or presenting with poor-prognosis disease should be followed up individually by specialised centres. Tables 8.1-8.3 show the minimal recommendations for follow-up of the three different groups based on recommendations developed at a European Society for Medical Oncology (ESMO) consensus conference [263].

Both MRI and CT can be used to evaluate the retroperitoneum, pelvis and inguinal regions for sites of metastatic disease from GCT [264]. Magnetic resonance imaging benefits from an absence of ionising radiation but is more time consuming and less readily available than CT [265]. Given the frequency of follow-up, over a number of years some studies have estimated a risk of up to 1 in 300 of second malignancy related to CT imaging follow-up alone [49], although more recent dose saving protocols and limitations on field of view will have mitigated this somewhat. Nevertheless, this risk could be excluded by the use of MRI for follow-up.

Both MRI and CT rely predominantly on size cut-offs for evaluation given the excellent spatial resolution of both modalities, with morphological assessment for features such as necrosis and irregular shape an adjunct. Sensitivity and specificity vary according to the size cut-off used [264]. However, studies have shown comparable excellent results between MRI and CT with up to 98% sensitivity on MRI for the detection of retroperitoneal nodal metastases in GCT [266]. It has, however, been demonstrated that reader experience is important when interpreting images [267]. In the setting of GCT, one study demonstrated decreased sensitivity for detection of retroperitoneal nodal disease on MRI when reported by a trainee radiologist, with sensitivity of detection of 80% [49]. However, experienced radiologists in the same study again achieved sensitivity for detection of nodal disease of 97% with good interobserver agreement. It was therefore suggested that if MRI is to be used instead of CT for follow-up this be done in centres/units with oncological radiologists who routinely report MRI and CT in patients with GCT rather than general radiologists who may only occasionally see such imaging. Consequently, MRI of the abdomen can be used as an alternative to CECT in experienced centres [268].
FDG-PET-CT is only recommended for seminoma patients with post-chemotherapy residual masses > 3 cm in largest diameter as outlined in section 7.3.2.1.

Regarding the use of US examination of the contralateral testis, the majority of the consensus meeting participants did not support repeat US investigation, either with negative biopsy or if no contralateral biopsy has been performed [263].

A very late relapse (VLR) after five years is a rare event occurring in approximately 0.5% of patients based on a population-based analysis [256]. The aim of follow-up beyond five years therefore shifts to detection of late side effects of treatment and imaging tests are not routinely recommended.

Most patients with VLR are diagnosed due to symptoms, although up to 50% elevated tumour markers are present in both seminoma and NSGCTs [256, 269]. Patient education regarding relapse symptoms and clinician awareness are important elements of survivorship management. Early use of imaging and tumour markers with suspicion of relapse is encouraged.

Table 11: Recommended minimal follow-up for seminoma clinical stage I on active surveillance or after adjuvant treatment (carboplatin or radiotherapy)

<table>
<thead>
<tr>
<th>Modality</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Years 4 & 5</th>
<th>After 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumour markers ± doctor visit</td>
<td>2 times</td>
<td>2 times</td>
<td>2 times</td>
<td>Once</td>
<td>Further management according to survivorship care plan</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Abdominopelvic magnetic resonance imaging (MRI)/computed tomography (CT)</td>
<td>2 times</td>
<td>2 times</td>
<td>Once at 36 months</td>
<td>Once at 60 months</td>
<td></td>
</tr>
</tbody>
</table>

Table 12: Recommended minimal follow-up for non-seminoma clinical stage I on active surveillance

<table>
<thead>
<tr>
<th>Modality</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Years 4 & 5</th>
<th>After 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumour markers ± doctor visit</td>
<td>4 times*</td>
<td>4 times</td>
<td>2 times</td>
<td>1-2 times</td>
<td>Further management according to survivorship care plan</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>2 times</td>
<td>2 times</td>
<td>Once, in case of LVI+</td>
<td>At 60 months if LVI+</td>
<td></td>
</tr>
<tr>
<td>Abdominopelvic magnetic resonance imaging (MRI)/computed tomography (CT)</td>
<td>2 times</td>
<td>At 24 months**</td>
<td>Once at 36 months***</td>
<td>Once at 60 months***</td>
<td></td>
</tr>
</tbody>
</table>

* In case of high-risk (LVI+) a minority of the consensus group members recommended six times.
** In case of high-risk (LVI+) a majority of the consensus group members recommended an additional CT at eighteen months.
*** Recommended by 50% of the consensus group members.
LVI+ = Lymphovascular invasion present

Table 13: Recommended minimal follow-up after adjuvant treatment or complete remission for advanced disease (excluded: poor-prognosis and no remission)

<table>
<thead>
<tr>
<th>Modality</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Years 4 & 5</th>
<th>After 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumour markers ± doctor visit</td>
<td>4 times</td>
<td>4 times</td>
<td>2 times</td>
<td>2 times</td>
<td>Further management according to survivorship care plan**</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>1-2 times</td>
<td>Once</td>
<td>Once</td>
<td>Once</td>
<td>-</td>
</tr>
<tr>
<td>Abdominopelvic magnetic resonance imaging (MRI)/computed tomography (CT)</td>
<td>1-2 times</td>
<td>At 24 months</td>
<td>Once at 36 months</td>
<td>Once at 60 months</td>
<td></td>
</tr>
<tr>
<td>Thorax CT</td>
<td>1-2 times*</td>
<td>At 24 months*</td>
<td>Once at 60 months*</td>
<td>Once at 60 months*</td>
<td></td>
</tr>
</tbody>
</table>

* In conjunction with abdominopelvic MRI/CT in case of pulmonary metastases at diagnosis.
** In case of teratoma in resected residual disease: the patient should remain with the uro-oncologist.
8.2 Quality of life and long-term toxicities after cure of testicular cancer

The vast majority of patients will be cured with five-year relative survival rates of approximately 95% in Western Europe. Testicular cancer patients are usually between 18 and 40 years of age at diagnosis and life expectancy after cure extends over several decades [270]. Patients should be informed before treatment of common long-term toxicities, which are avoided or minimised by adherence to international guidelines.

During follow-up, patients should be screened and treated for known risk factors such as hypertension, hyperlipidaemia, and testosterone deficiency. Adverse health outcomes (AHOs) are more commonly found in TC patients who received chemotherapy than those cured by surgery alone. Further, modifiable risk factors do contribute to AHOs like hypertension and noise exposure to hearing impairment or smoking to Raynaud phenomenon [271]. Therefore, a healthy lifestyle should be promoted during the follow-up consultations. Adverse health outcomes are associated with unemployment, which is found clearly increased in TC survivors as compared to a male normative population [272]. When follow-up by the TC clinician is terminated, a written cancer survivorship plan addressing late toxic effects, lifestyle recommendations, recurrence risk, and cancer-specific follow-up may be helpful [203, 273].

*For more information regarding long term toxicities and quality of life issues, please see appendix 3, available online https://uroweb.org/guidelines/testicular-cancer/publications-appendices

9. RARE ADULT PARA- AND TESTICULAR TUMOURS

Less than 5% of testicular cancers are unrelated to GCNIS and lack 12p alterations [274, 275]. These tumours are rare with available literature based on case reports and small retrospective series. Given the rarity of non-germ cell para-/testicular cancers, referral of these cases to specialist units for multidisciplinary discussion including central image and pathology review is highly recommended. As a result of publication bias related to these types of study, the risk of metastatic disease may be less than that reported in the literature.

9.1 Classification

These testicular tumours have a similar presentation as TC and are only identified after histopathologic examination. They are classified according to the WHO Classification of Tumours of the Urinary System and Male Genital Organs [276].

9.2 Spermatocytic Tumours

Spermatocytic tumours are GCTs unrelated to GCNIS. They may show a unique amplification of chromosome 9 corresponding to the DMRT1 gene and are never associated with other forms of germ cell tumours [276].

Spermatocytic tumours are rare, occur exclusively in the testis and do not normally show elevated tumour markers [276]. Previously named “spermatocytic seminomas” they have been recently reclassified as spermatocytic tumours [276]. As those tumours cannot be differentiated from seminoma GCT by frozen section analysis, radical orchidectomy is the standard treatment option. Outcomes after testis-sparing surgery or adjuvant treatment is unknown and therefore not recommended [277]. Metastatic disease is very rare, usually associated with ‘sarcomatoid change’ and typically presents at or soon after initial diagnosis with limited survival [277].

9.3 Sex cord-stromal tumours

Sex cord–stromal tumours are relatively uncommon but represent the second largest group of primary testicular tumours after GCT’s [278]. As a small subset of these tumours are clinically malignant, a thorough evaluation of those morphological features associated with malignancy should be performed to guide management. Two or more of the following features are associated with malignant potential: size > 5 cm, infiltrative borders, cytological atypia, three or more mitotic figures per ten high-power fields, vascular invasion and necrosis [278].

9.3.1 Leydig cell tumours

Leydig cell tumours comprise about 4% of adult testicular tumours. These mainly present as localised tumours with metastases occurring in only 2.5% [279]. They may present with hormonal manifestations, including gynaecomastia and more rarely are accompanied by Cushing’s Syndrome [389]. With TSS a local recurrence
rate of 7% has been reported although no adjuvant treatment options can be recommended [280]. Several risk factors for metastatic disease have been proposed which may guide image-guided follow-up intensity [280]. Survival of men with metastatic disease is poor but occasional responses to surgical and systemic treatment have been reported [280].

9.3.2 Sertoli cell tumours
Sertoli cell tumours account for approximately 1% of testicular neoplasms [278]. The risk of metastases is unclear. With TSS a local recurrence rate of < 1% has been reported although no adjuvant treatment options can be recommended [281]. Several risk factors for metastatic disease have been proposed which may guide image-guided follow-up intensity [281]. Survival of men with metastatic disease is poor although occasional responses to surgery has been reported [281].

9.3.3 Granulosa cell tumour
Granulosa cell tumours, which include adult and juvenile variants, are extremely rare and metastatic potential is unclear [278]. With TSS a local recurrence rate of 5% has been reported although no adjuvant treatment options can be recommended [282]. Whereas metastatic disease has never been reported in juvenile granulosa cell tumours, men with adult type may occasionally present with metastatic disease [282]. Survival of men with metastatic disease is poor although rare instances of response to surgical or systemic treatment has been reported [282].

9.3.4 Thecoma/fibroma group of tumours
These tumours derive from the testicular parenchymal stroma or from the tunica albuginea. They seem to be uniformly benign [278, 283].

9.3.5 Paratesticular tumours of the epididymis or spermatic cord
The majority of epididymal masses are benign cystic or inflammatory conditions. Solid epididymal tumours are rare and comprise numerous benign and neoplastic lesions. In the only population-based analyses [284], the majority of neoplastic lesions of the epididymis or spermatic cord were sarcomas, metastases from other organs or primary adenocarcinomas similar to proportions reported in institutional studies [285, 286]. Benign lesions, which may comprise the majority in clinical practice include lipomas, adenomatoid tumours leiomyomas and papillary cystadenomas.

Robust criteria to differentiate between neoplastic benign lesions have not been defined although ultrasonography, with or without fine needle aspiration [287] MRI [48, 288], or surgical exploration with frozen section analyses or histopathological confirmation can be considered. No clear recommendation can be provided regarding surgical approach, extent of resection and neo- or adjuvant treatment can be given.

9.4 Mesothelioma of the tunica vaginalis testis
Mesothelioma of the tunica vaginalis testis is a rare but aggressive disease [289]. Beside older age, larger tumour size, presence of necrosis, angiolymphatic invasion or a high mitotic index the only modifiable risk factors represents local recurrence. Therefore, aggressive local treatment with hemiscrotectomy is recommended. No clear recommendation can be given regarding adjuvant treatment. In case of metastatic disease, the median overall survival is a few months only and multimodal treatment could be considered.
10. REFERENCES

p-9781119263579

11. CONFLICT OF INTEREST

All members of the Testicular Cancer Guidelines working group have provided disclosure statements of all relationships that they have that might be perceived as a potential source of a conflict of interest. This information is publicly accessible through the European Association of Urology website: http://www.uroweb.org/guidelines.

This guidelines document was developed with the financial support of the European Association of Urology. No external sources of funding and support have been involved. The EAU is a non-profit organisation and funding is limited to administrative assistance and travel and meeting expenses. No honoraria or other reimbursements have been provided.

12. CITATION INFORMATION

The format in which to cite the EAU Guidelines will vary depending on the style guide of the journal in which the citation appears. Accordingly, the number of authors or whether, for instance, to include the publisher, location, or an ISBN number may vary.

The compilation of the complete Guidelines should be referenced as:

If a publisher and/or location is required, include:

References to individual guidelines should be structured in the following way:
Contributors’ names. Title of resource. Publication type. ISBN. Publisher and publisher location, year.